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ABSTRACT 

In recent years, rt has become apparent that the design and maintenance of pavement 

drainage extends the service life of pavements. Most pavement structures now incorporate 

subsurface layers, part of whose function is to dram away excess water, which can be 

extremely deletenous to the life of the pavement. However, aggregate matenals for pavement 

bases must be carefully selected and properly constructed to provide adequate permeability 

and stability as well. To assure the effectiveness of such drainage layers after they have been 

spread and compacted, simple, rapid, m-srtu permeability and stability testing and end-result 

specification are needed. 

This report includes conclusions and recommendations relayed to four main study 

objectives: (1) Determine the optimal range for m-place stability and m-place permeability 

based on Iowa aggregate sources; (2) Evaluate the feasibility of an air permeameter for 

determining the permeability of open and well-graded drainage layers m situ; (3) Develop 

reliable end-result quality control/quality assurance specifications for stability and 

permeability• (4) Refine aggregate placement and construction methods to optimize 

uniformity 

An Air Permeameter Test (APT) device was developed dunng this study for rapid 

measurement of m-place permeability of pavement bases. Dynamic Cone Penetrometer 

(DCP), Clegg Hammer, and GeoGauge vibration tests were performed for m-place stability 

measurements. Significant spatial vanarion of most parameters is observed over the final 

compacted base layer. To achieve the PCC pavement design assumptions and by considering 

the spatial variability occumng in field, a target CBR of 15%and target permeability of 4 

cm/sec and 0.84 cm/sec to achieve 90%and 50% drainage respectively is recommended for 

QC/QA. A strong influence of fines content and aggregate type on strength, stiffness and 

permeability is observed. Construction operations are found to contribute to spatial 

variability m field. Alternate construction procedures and equipment are recommended to 

minimize this variation. 
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INTR4DU~TION 

In recent years, it has become apparent that the design and maintenance of pavement 

drainage extends the service life of pavements. In new pavements, drainage Issues are 

addressed by ~ncorporating drainage layers into the design of the pavement. To achieve the 

desired benefits of these pavement designs, we must be able to accurately calculate the 

required permeability of the drainage layer and assess the true hydraulic conductivity of 

materials that will constitute the drainage system. This assessment requires a means to 

accurately measure the hydraulic conductivity of the drainage media, both ~n the laboratory 

for source approval and in the field, to determine whether the materal and construction 

methods are producing the desired results. 

Most pavement structures now incorporate subsurface layers. Part of the function of 

these subsurface layers is to drain away excess water, which can be extremely deleterous to 

the life of the pavement. However, aggregate materals for permeable bases must be carefully 

selected and properly constructed to provide not only permeability but uniform stability 

Compaction of the drainage matenal can alter the gradation and create additional fines that 

may result ~n lower permeability than desired. Furthermore, construction act~vlties to deposit 

and spread the aggregate can cause segregation and non-uniform permeability and stability 

Spatial varability of both permeability and stability of bases and its degree and consequences 

are poorly understood. 

To assure the effectiveness of such drainage layers after they have been spread and 

compacted, simple, raped, in-situ permeability and stability testing and end-result 

spec~ficatxons are needed. 

Research obi ectives 

The main ob~ectives of this study were to: 

• Determine the optimal range far In-place stability and ~n-place permeability based on 

Iowa aggregate sources; 

® Evaluate the feasibility of an air perneameter for determining the permeability of 

open and well-graded drainage layers in situ; 

• Develop reliable end-result QC/QA specifications for stability and permeability• and 
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~ Refine aggregate placement and construction methods to optimize uniformity 

Research Phan 

Tl~s research prod ect included In-situ testing of full-scale test sections of granular 

base materials on new construction prod ects using the described test methods. For stability 

testing, dynamic cone penetration (DCP), GeoGauge vibration tests, and Clegg Hammer 

impact tests were conducted side-by-side to develop comparisons and correlations. This 

equipment is viewed as being simple, rapid, and practical. For permeability testing, the Air 

Permeameter Test (APT) device was develop and used as the prlrnary field tool to measure 

permeability 

Six projects with different aggregate sources and contractors were observed and 

tested, Prior to 1n-situ stability and permeability testing, construction operations were closely 

documented, aggregate source and gradation parameter values were determuned, and 

laboratory permeability tests were conducted. Laboratory gradation and permeability tests 

served as the benchn~.ark for tests conducted in-situ after base construction. 

A wide range of Iowa aggregates were statlst~cally analyzed to evaluate relat~onsh~ps 

of stability versus permeability as a function of pavement design parameter values, aggregate 

morphology and construction operations. As a result, guidelines for QC/QA specifications 

were developed for rapid In-situ field-testing. 

Research Tasks 

The evaluation process consisted of the following tasks: 

• Conduct a detailed literature search on mformahon pertaining to aggregate stability 

and permeability and construction operations used to place and manipulate granular 

materials. A preliminary review indicates that extensive IHRB research was 

conducted by Iowa State University m the 1960's-1970s concerning aggregate 

stability as a function of gradation and morphology Tests were mostly confined to 

the lab. 

• Establish a database of permeability and stability characteristics for a wide range of 

drainage material used m Iowa. 

• Derive relationships that optimize stability versus permeability for various pavement 
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design conditions and material. 

• Conduct in situ permeability and stability tests on a range of drainage layers being 

constructed on county and state highway prod ects in Iowa. 

• Develop a standardized air permeameter device and test procedure for conducting in 

situ permeability test measurements of granular drainage layers, including 

quantification of the Influence of layer thickness. 

• Demonstrate the feasibility of using the DCP Geo~auge, and Clegg Hammer for 

stability measurements of the drainage layer. 

• Develop standardized test procedures and equipment for laboratory permeability 

measurements and stability measurements of drainage material. 

• Recommend construction operations and equipment to optimize aggregate placement 

by minimizing segregation, degradation and intrusion of soil fines. 

® Prepare the final report incorporating field data, construction operations, laboratory 

studies, and developmental QC/QA specifications. 

Significant Findings and Recommendations 

Some of significant findings from this research Include the following: 

• Documentation of the spatial vanability of engmeenng properties of granular base 

materials; 

• Development of a rapid QC/QA tool for determining in-place hydraulic conductivity 

(APT); 

• Establishment of target QC/QA stability values using the DCP, Clegg Hammer and 

GeoGauge and target QC/QA hydraulic conductivity values using the APT 

• Understanding the influence of fines content and aggregate type on the engineering 

properties of base materials (e.g. strength, stiffness, and hydraulic conductivity); and 

Recommending changes to construction operations to minimize segregation of fines. 
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LITER.ATI~RE REVIEW 

The purpose of this literature review was to summarize the key engmeenng properties 

affecting pavement base material performance and methods for charactenzmg properties of 

interest (i.e. permeability). More specifically the literature review includes a summary of (1) 

aggregate properties (e.g. gradation, morphology density etc.) affecting stability and 

permeability; (2) current practices/recommendations for minimum stability and permeability 

requirements; (3) construction practices and procedures to minimize aggregate segregation; 

and (4) methods for testing m-place stability and permeability 

The opt2mization of structural contributions from high stability versus the need to 

provide adequate drainage for pavement base materials is still a point of debate at the 

national level. Currently two national level workshops are being organized to bring attention 

to the topic. Future research work is likely to follow especially with the movement to 

incorporate resilient modulus measurements of materials with the new AASHTO 200x 

pavement design guide. 

A wide range of current practices have been identified from tYus literature review 

Many researchers conclude that the use of treated permeable bases under PCC pavements 

significantly improves performance by adding more stability while maintaining adequate 

permeability Others indicate that controlling the fines content is a more practical approach. 

The stability of pavement bases is often characterized using strength parameters such as 

CBR, but may not be of main concern in pavement design, as resilient properties of the 

aggregate and the tendency to develop plastic strains under repetitive loading are key No 

field results of m-place permeability measurements on aggregate base layers were identified 

m this literature review 

Effects of Stability and Permeability on Pavement Base 

Pavement structures generally consist of three layers: (a) subgrade; (b) aggregate 

base/subbase course; and (c) wearing surface. The base course is the layer of aggregate 

material that lies immediately below the pavement layer and usually consists of crushed 

aggregate or gravel or recycled materials (e.g. recycled concrete or recycled asphalt). The 

pavement surface usually consists of Asphaltic cement concrete (ACC) or Portland cement 
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concrete (PCC). In Iowa, most new pavement construction is PCC followed several years 

later by an ACC overlay 

According to Dawson (1995), the main roles of an aggregate base layer in pavements 

include providing (a) protection for subgrade from significant deformation due to traffic 

loading; (b) adequate support for the surface layer; (c) stable construction platform dunng 

pavement surfacing; (d) adequate drainage for the uifiltration through cracks and~oints 

particularly m PCC pavements; (e) subgrade protection against frost and environmental 

damage; and (fl waste disposal. Although construction points are a maJor source of water 

mfiltrarion, water penetrates and accumulates m the base and subbase for ~omt-less 

continuously reinforced concrete pavements and asphalt wearing surfaces as well (Randolph 

et al. 2000). 

A considerable amount of research has been conducted to study the mechanisms of 

pavement deterioration, from which rt is evident that undramed water m supporting layers is 

a mayor contributor to distress and premature failure in pavements. Huang (2004) 

summarized the detrimental effects of water, when trapped in a pavement's structure as 

follows: 

I It reduces the strength of unbound granular materials and subgrade soils. 

2. It causes pumping of concrete pavements with subsequent faulting, cracking, and 

general shoulder deterioration. 

3. With the high hydrodynamic pressure generated by moving traffic, pumping of fines 

in the base course of flexible pavements may also occur with resulting loss of 

support. 

4. In northern climates with a depth of frost penetration greater than the pavement 

thickness, high water tables cause frost heave and the reduction of load-carrying 

capacity during the frost melting period. 

5 Water causes differential heaving over swelling soils. 

b. Continuous contact with water causes stripping of asphalt mixture and durability or 

"D" cracking of concrete (Huang 2004}. 

Sources of free water in pavement systems include (a) water infiltrated through cracks 

m the pavement; (b} water entering Iongrtudinal pavement/shoulder Joints; (c) seepage water 
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from ditches and medians; and (d) high ground water table (Baumgardner, 1992). 

Repetitive traffic loading on saturated base materials cause temporary development of 

very high pore pressures which lead to loss m strength (Cedergren, 1974). Possible cases of 

failure in PCC and ACC pavements are shown m Figures 1 and 2, respectively For PCC 

pavements, high pore pressures cause pumping of water and fine material out of the 

subsurface due to deflection at ~omts (Figure 1). For ACC pavements, water with fine 

material can also be pumped out causing enlargement of void spaces m the pavement base 

(Figure 2) (Randolph et al. 2000). 

Direction 
of Trav of 

PCC Wearing Surface 

Aggregate 
Base 

Subgrade 

~~ Pore Pressure'—~ 
E--- Wave —~ 

~"

Figure 1. Possible failure in PCC Pavements 
(reproduced from Randolph et al. 2000) 

Cracks fieled with 
W ate r 

YACC Wearing Surfac 

~~ 1 
Subgrade 

Direction 
of Travel 

Figure 2. Possible failure in ACC Pavements 
(reproduced from Randolph et al. 2000) 
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Barenberg and Thompson (1970) uivestigated a pavement section at University of 

Illinois and concluded that ingress of free water into test pavements increased the rate of 

damage per traffic impact by 100 to 200 times. Investigations by Georgia DOT in 1969 

(Adams, 1969) and the Federal Highway Administration in 1973 (FHWA, 1973) on 3 

different interstate locations indicated that none of the causes for pavement failure were due 

to subgrade distress, but rather the main cause was water retained m the pavement base. 

Smith et al. (1990) conducted a nationwide performance study on 30~ointed concrete 

pavement test sections and concluded that (a) "The best bases m terms of pavement 

performance are those designed to be permeable"• and (b) "An unexpected benefit of the use 

of permeable bases was the reduction m `D-cracking' on pavements susceptible to that 

distress." 

Hamgan (2002) conducted an intensive study on 89 pavement sections to investigate 

the performance of pavement subsurface drainage on both flexible and ngid pavements. 

Findings from this study include: (a) using permeable base has a significant effect on 

reducing point faulting in case ofnon-doweled ~omted PCC pavements; (b) a significant 

reduction of D-cracking was identified for PCC pavement sections having permeable base as 

compared to dense-graded treated base; (c) permeable base use has a rrummal effect on 

reducing ~omt faulting m case of doweled ~omted PCC pavements; (d) both structural 

capacity and dramability are found to be important for the performance of flexible 

pavements; (e) conventional ACC pavements with dense-graded bases showed more fatigue 

when compared to ACC pavements with permeable bases. Hall and Correa (2003) observed 

that undramed PCC pavement sections with either granular base or lean concrete base may 

develop roughness, transverse cracking, and longitudinal cracking more rapidly than drained 

pavement sections with a permeable asphalt-treated base. 

Cracks developed at the pavement surface from differential heave are a common 

problem in northern hemisphere climates. Harngan (2002) also indicates that unbound dense-

graded aggregate bases show significantly more rutting m colder areas when compared to 

warmer areas. This can be attributed to freeze-thaw action developed m the saturated 

aggregate base m colder regions. As shown in Figure 3, Eigenbrod and Knuttsson (1992) 

illustrate the behavior of failure m flexible pavements due to freeze-thaw action m the 
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pavement base. Water condenses and forms ice Lenses at the interface between ACC 

pavement and base as soon as the ground temperatures fall below freezing. These ice Tenses 

start melting dunng thawing penods, and if the base does not allow adequate drainage, high 

pore water pressures can develop under the pavement, which results in Loss of shear strength 

in the base and subgrade matenals. 

Koliso~a et al. (2002) examined the strength and deformation behavior of coarse 

aggregate with seasonal vanation in Finland in terms of suction theory for a senes of 

research projects from 1996 to 2000. Suction theory explains the function of effective stress 

between soil particles and the impact of water m the aggregate. This research shows that 

permanent deformation m an aggregate base ~s a significant problem, and ongmates from 

excess pore water pressures delivered by dynamic axle loads. The problem was increased 

from adsorbed water available dunng the freezing phase. Such excess pore water pressures 

decrease the effective stresses between particles, and lead to plastic deformations. 

PAVEMENT 
W 

~~~ 

FROZEN ROAD BED 

~a; 

y -i5cm 

THAWED SOIL 

fCE RICH SOIL 

ICE RICH SOIL 

{CE RICH SOIL 

6i.~~~ ̀ ~ G am\ 

FROZEN ROAD BED 

(b) 

f~) 
FAILURE DUE TO 
TRAFFIC LOAD ~ /~-~C" 

r FROZEN ROAD BED 

~~) 

-8crn 

Figure 3. Schematic representation of failure ~n pavements due to freeze-thaw• (a} 
Condensation of water dunng fall season creates ice r><ch soil near pavement base. 

(b} excess water creates high pore pressure near pavement base. 
(c} High pare pressure trv>:ng to escape, bulges pavement, causes crac~ng. 

(d} High pore pressure reduces shear strength of soil and causes failure. 
(Reproduced from Eigenbrod and Knuttsson, f9~}2} 
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This literature review suggests that accumulated water in the base contributes to base 

instability and pavement distress. Thus, rt is important to understand how water becomes 

trapped in the base layer. Gradation of the aggregate, particularly the fines content (passing 

No. 200 sieve), has been observed as a key factor. Figure 4 illustrates the influence of fines 

content on the large particle matrix. Aggregate base course containing no fines (Figure 4a), 

achieves stability through grain-to-grain interlock, which results in lower densities but higher 

permeability and Less frost susceptibility On the other hand, base course aggregate with void 

spaces filled with fines (Figure fib) have higher density and higher stability but lower 

permeability Gradations having excess fines (Figure 4c) cause aggregate particles to float in 

the matrix resulting zn low permeability with low stability (Thornton and Elliott, 1988). This 

mechanism was demonstrated experimentally by Ferguson (1972) who investigated two 

crushed stone materials in Iowa. This work showed that increased fines content above a 

critical fines content, CF (Figure 5) causes separation of the coarse aggregate particles. This 

separation reduces the number of point contacts between larger particles thus allowing shear 

planes to develop within the matnx of fines. Figure 6 further illustrates the dependence of 

vinous engineering properties like frost heave, density triaxial strength, and permeability 

with changes in fines content (Aggregate Handbook, 1996). Table 1 shows the effects of 

fines content on permanent deformation response, strength, stiffness, durability and 

permeability of aggregates. It can be seen that fines content exerts a significant influence on 

permeability of aggregates as well as important influences on the other properties. 

Open Voids 

a. Open Graded 
(No fines) 

Voids filled 
in fines 

t;. Well graded 
(fines at maximum density) (c) Excess Fines 

Figure 4. Influence of fines on aggregate mix 
(1Vlodified from Aggregate Handbook, 1996) 

Excess fines 
causing particle 
separation 
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Figure 5. Void ratio vs. percent fines passing No. 200 sieve 
(modified from Ferguson, 1972) 

Until the early 1970's, the emphasis in pavement design was on achieving high 

density and stability rather than on drainability Likely this was because pavement designs 

were pnmarily based on the strength of the supporting layers. Furthermore, dynamic effects 

from wheel impacts on free water present in the structural supporting layers were not 

considered as a key design parameter. Premature failures m pavements were observed, 

however that suggested drainage problems. At that time, a typical remedy was to increase the 

percent cement or stabilizer to make the base more stable, to widen the base, or to increase 

the thickness of the weanng surface. No early attempts were made to improve the 

dramability of the base (Cedergren 1974). In 1973, a comprehensive study was undertaken 

by FHWA (FHWA 1973) to develop Guidelines for the Design of Subsurface Draanage 

Systems for Highway Structural Sectaons, and they concluded that poor drainage of heavy-

duty pavements was a mayor contributing factor to premature failure of pavements. Based on 
this finding, drainable base layers were recommended. Later AASHTO also introduced 

dramability as an important factor m the 1986 Guade for Desagn orPavement Structures. 
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Figure 6. Effect of fines on frost heave, VMA (density), drainage, and triaxial strength 
(modified from Aggregate Handbook, 1996) 

Subsequently, several researchers have worked to optimize gradations of aggregates 

for base construction by mvestigatmg a wide range of engineering properties (Table 1). 

Open-graded material with little or no fines has been compared for strength and dramability 

with well-graded materials. The influence of aggregate properties (gradation and particle 

morphology and compaction type/energy) on strength and dramability of pavement bases are 

reviewed m the following sections. 
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Table 1. Effect of intrinsic and manufactured properties of aggregates as controlling 
factors on engmeer~ng properties of granular material in pavement layers 

(after Dawson et al. 2000) 

Controlling Factor 

PROPERTY 

Stiffness 
Susceptibility to 

Permanent 
Deformation 

Strength Permeability Durability 

Fines content ~~ ~ vanes ma~orl 1 
Type Gravel instead 
of Crushed Rock 

'~ t ~ none usually 

Grading Well graded 
instead of Single-sized 

* minor I ~ ~ ma~or~ 

Maximum size Large 
instead of small 

t 1~ rrunor~ ~ ~~ 

Shape 
AngulariRough 
instead of 
Rounded/Smooth 

t j ~' 
minor minor 

Density 1 1 1' 1 minor 

Moisture Content ma~or~ mayor I ma~or~ ma~or~ vanes 

Stress History ~~ ma~or~ mmor~ none ~ 

Mean Stress Level '~ ~ ~ mmor~ 
Notes; 
~= Value of ro erty increases with increase (or indicated change} in controlling factor P P 

= V lue of roe decreases with increase or Indicated than a in controllin factor a p p I`ty ( g) g 

Influence of Aggregate Properties on Stability of Pavement Sase 

Effect of Aggregate Gradation 

Ferguson (1972) examined the behavior of crushed limestone obtained from two 

sources m Iowa (Garner and Bedford) for different stress conditions and fines content. 

Results from this study are summanzed m Table 2, and indicate that the fines content 

controls the permanent strain development under cyclic loading. Figure 7 shows the behavior 

of Bedford crushed stone at 100 deviator stress applications with vanation m fines content. 

An increase m fines content above the critical fines content (CF) greatly increased the rate of 

permanent vial strain. This can be seen from the values of S2 (slope of line after CF) which 

are up to 200 times higher than the values of S 1 (slope of line before CF). Walues of S 1 were 

independent of number of load cycles, whereas values of S2 were almost uniformly 

increasing with increased load applications. 
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Table 2. Summary of results (Ferguson, 1972) 

Material No. of 
load c cles Y 

Deviator stress 
a -6 si ( 1 3) (l~ ~ 

Critical Fines 
Content (CF) 

(oò) 
S1 S2 S2/Sl 

~~rner 

10 135 7.3 0,046 0.201 4.4 
10(1 135 8.8 0.059 0,078 1.3 
200 135 9 0.044 1.28 29.1 
500 135 8.6 0.019 2. ~ 8 114.7 ... 
1000 135 9 4.035 7 47 213.4 

Bedford 

100 5 5.7 13.6 0.097 1.14 11.8 
200 55.7 15.5 0.116 2.2 19.0 
50(1 55.7 15.9 0.134 3.76 28.1 
1000 55.7 15.7 0.135 4.23 31,3 
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Figure 7 Effect of fines content on axial strain after 100 deviator stress applications on 
Bedford crushed stone (Modified from Ferguson,1972) 

Jones et al. (1972) investigated the effects of gradation on density and strength of a 
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crushed granite base. The aggregate gradations used in this study were varied within the 

specification band in ASTM D 2940, "Standard Specification for Graded Aggregate Material 

far Bases or Subbases for Highway or Airports." This study shows that the variation in shear 

strength of a graded aggregate mix is in the range of 68-123 psi within the specification 

band, and that the peak shear strength and maximum density are achieved for specimens near 

the meddle gradation of the specification band. This study recommended limiting fines 

passing the loo. 200 sieve to 10%. 

Thompson and Smith { 1990} studied the effect of fines on performance of granular 

base material used for pavements in Illinois. The study was performed to compare the 

performance of proposed open gradation CM-06 to the previous CA-6 dense-graded mix 

according to Illinois Df,~T standard specifications. CM-06 and CA-6 gradations are provided 

in Table 3. The only modification in the gradation from dense to ©pen-graded mix is a 

reduction in percent fines passing the No. 200 sieve. Tests were conducted to determine 

pertinent strength properties such as resilient modulus, consolidation due to repetitive 

loading, and raped shear strength characteristics of typical aggregates used in base 

construction. Raped shear strength represents the measurement from triaxial compression 

tests where the specimen is rapidly loaded at 1.5 in/sec deformation rate to failure. Materials 

investigated Include crushed limestone and crushed and uncrushed gravel meeting CA-6 and 

CM-06 gradations. Test results are summarized in Table 4 and show that there is no 

signif cant difference in rapid shear strength values with change in gradation, in both 

repetitive and non-repetitive loading cases. However, repetitive loading increased the 

strength and stiffness of samples compared to non-repetltive loading. Cohesion values were 

obtained which varied with changes in gradation for the crushed stone. There was little 

variability in friction angle and resilient modulus (Mr} with change in gradation. Therefore, 

the authors recommended not using resilient modulus as a strength evaluating measure for 

granular materials. Finally the open-graded material {CM-06} was found to be satisfactory 

having sufficient stability with increased permeability 
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Table 3. CA.-6 and CM-ob gradation (Thompson and Smith, 1990} 

Sieve 
%Passing 

CA-b CM-46 
1. ~" 100 100 
1 " 100-90 100-90 

1 /2" 90-60 90-60 
#4 56-30 56-30 
# 16 40-10 40-10 
#200 4-12 ~ 0-4 

Table 4. Summary of results (Thompson and Smrth,1990) 

Sieve Size 

°/© Passing 

Crushed Stone Crushed Gravel ~ Gravel Partially 
crushed gravel 

CA-6 CM- 06 CA-6 CM-
ob CA-6 CNi-Ob CA-b 

1 100 100 100 100 ~ 95.1 100 99.I 
3/4" 97.5 85.2 93.1 95.8 89.5 92.4 92 
1 /2" 90.2 67.9 72.3 77 81.8 78.4 7$. l 
#4 53.1 42 32.1 33.1 46.9 42.8 55.2 
#16 25.4 12.7 15.8 14.1 ~ 20.3 15.7 23.8 

#200 10.5 3.4 7.8 3.1 ~ 5 4.8 8.5 

~d max 143.6 122.5 134.1 128.4 134.4 135 133.4 
Faction Angle 45.9 44.4 45.8 4b.4 43.8 42.7 43.5 
Cohesion (psi) 24.4 17 7 13.4 15.1 11.9 9.6 1.1.1 

Resilient Modulus ~ksi) 35.4 31.1 29.3 29.2 31 2$.6 I9 4 
~Rapad Shear Strength 
(Non-Re etitive) ( si) P P 

194 171 164 175 127 1.09 l 1 b 

Rapid Shear Strength 
(Repetitive) (psi) 354' 354' 220 3541 354' 34b 211 

Permanent Strain 0.087 0.114 0.1453 0.0762 0.0673 0.1303 0.3373
1 Maximum capacity of the test ram, 2 at stress rate (tsl /63) 45/15, 3 at stress rate (61/63} 30/1.5 

Kazmierowski et al. (1994) investigated the performance of various open-.graded 

drainage layers (OGDL) in field. The C?GDL had a gradation of 90%--100% material retained 

on 4.75 mm sieve and a maximum of 2%passing ~To. 200. Falling Weight Deflectometer 

(FWD) testing was conducted on GGDL untreated, asphalt treated, and cement treated 

sections. The OGDL material treated with cement at the rate of 180 kg/m3 resulted in sma11 

deflections of about 0.5 mm when compared to GGDL material treated with ~ .8°l0 of asphalt 

which exhibited deflections of 0.64 mm and untreated OGDL material with deflections of 

0.74 min. All three materials were in the range of acceptable deflectson for performance 
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criteria according to Ministry of Transportation, ®ntario. 

Highlands and Hoffman (1988} also conducted FWD testing to measure deflection of 

pavement slabs constructed over various base and subbase layers. These base and subbase 

layers were prepared as test sections by the Pennsylvania DaT with a wide range of 

gradations, which are listed in Table 5 Cement treated base performed well by producing 

small deflections of about 0.13 mm, when compared to other base materials. The asphalt 

treated base, untreated open-graded base, and high permeable base exhibited slightly larger 

deflections of about 0.17 mm. A test section with dense-graded aggregate base showed 

signifcantly higher deflections of about 0.5 mm, when compared to all other materials. 

Table 5. Gradations of material used for testing in Highlands and Hoffman, 1988 

Sieve 
Percent Passang 

CTB AT.B OG HP DG 
2" 100 100 100 100 100 

1.5" 100 100 98 98 
3/4" 75 85 66 72.5 80 
#4 36 16 4 12 35 

#10 17.5 7.5 25 
#40 4 5 18 
#200 3 4 4 

The National Stone Association (Aggregate Handbook, 1996) undertook a laboratory 

investigation to evaluate the performance ofdense-graded aggregate base materials. The 

Texas method of triaxial compression testing was used to simulate the capillary saturated 

base conditions in the field. Figure 8 shows the effect of fines content on strength and density 

with changes in confining pressure, fora 0,75 in. maximum size crushed stone. Results 

indicate that the optimum fines content for strength is about 9%. Based on these results, 5%-

1.2% passing the No. 200 sieve was recommended as a proper practical range. 

Thornton and Elliott (1988} studied the influence of fines content on the raped shear 

strength of different types of aggregates including crushed stone, crushed gravel and 

uncrushed gravel available in Arkansas (in this case Rapid shear strength was measured 

using dynamic triaxial test). Materials tested were in accordance with the SB-2 gradation 

specified by Arkansas State DOT and a modified gradation to achieve a maximum density of 
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135 pcf (Table 6). Test results from this study are sutnmanzed In Table 7 Results show that 

the shear strength decreases with an Increase In fines from about 8%--12%. 

Table 6. SB-2 gradation and the modified gradation (Thornton and Elliott, 1988} 

Sieve 
Percent Passing 

-
SB-Z Modified Gradation 

1 I /2'° 100 100 
1 -- 100 

3/4" 50-90 100 
318" -- 65.5 
# 4 25-50 40 
# 40 10-30 15 
# 200 3-10 6 

Table 7 Summary of results (Thornton and Elliott, 1988) 
Property Crushed Stone Crushed Gravel Uncrushed Gravel 

Dry Density (pct 135 135 135 135 135 135 
Relative Density (%) 100 100 98 98 98 98 
Moisture Content (%) 9 l 0.2 8.2 9.5 9 8.6 

fines (Pass No. 200) 6 12 6 12 6 8 
Raped Shear Strength (lbs) 3067 1881 1020 321 413 450 

Koliso~a (1997) studied the factors affecting stability performance of aggregates used 

in road and railroad pavements in Finland. Resilient modulus was chosen to describe the 

deformation behavior with changes m density moisture content, gram-size distribution, and 

aggregate type. In this study a large vanety of coarse-grained matenals were tested using a 

large scale tn~ial test with sample dimensions of 300 mm in diameter and 600 mm deep, in 

accordance with American SHRP protocol P46 testing procedure. The investigation shows 

that water content (i.e., degree of saturation) has a larger influence on resilient modulus for 

dense-graded aggregate than for open-graded aggregate. For dense-graded aggregate at lower 

moisture contents, resilient modulus increases due to suction. As saturation increases, excess 

pore water pressures can develop leading to a weakened response. The resilient modulus was 

also found to be stress and density dependent. An increase m density and applied stress 

showed an increase in resilient modulus. 
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Figure 8. Effect of Fines on strength and density with change in lateral pressure 
(reproduced from Aggregate Handbook, 1996) 

Cheung and Dawson (2002) investigated the effect of base aggregate gradation on 

pavement performance and other eng~neenng properties. Crushed dolomitic limestone was 

tested for its strength charactenst~cs at the upper limit, lower limit, and middle of the 

gradation band specified by the London Department of Transportation. The fines content was 

in the range of 0%-16.5 %.Results summanzed zn Table 8 indicate . a significant decrease ~n 

stiffness and an increase in axial strain for gradations towards the lower limit of the 

specification band (open-graded). Strength at the middle gradation was higher, evidenced by 

less axial strain under repetitive loading. Change in resilient modulus (NIr) between different 

aggregates was not significant and suggests that Mr is not a good measure to evaluate the 

strength characteristics of base aggregates. 
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Ismail and Raymond (2002) investigated materials meeting a wide range of 

gradations for their strength and performance characteristics. Results indicate that dense-

graded material exhibits less consolidation compared to open-graded material, in testing for 

SX105 c Iles of 140 kl~/m2 deviator stress followed by 5 105 cycles of 210 kN/m2 deviator Y 
stress. The smallest particle size used for dense-graded material was material passing No. 50; 

hence this study is not indicative of the influence of fines passing No. 200. Mr results vaned 

from 94-112 MNIm2 for different matenals and gradations, which is not a significant change. 

An increase in Mr was observed with increased deviator stress. 

Bowders et al. (2003), conducted a confined undrained (CU) cyclic loading test on a 

Type-5 base material, specified by the Missouri DQT to evaluate its strength and permanent 

deformation characteristics. The material had fines content in the range of 12%-19%. The 

CLJ stress-controlled test on this material showed that there is no significant change in 

deviator stress from 7% to 20% strain. This behavior is attributed to negative pore water 

pressures developed during loading. In contrast, strain-controlled tests up to 4% strain 

showed significant degradation and reduction of effective deviator stress to zero after the 

second load cycle due to build up of positive pore pressures. It was concluded that saturated 

bases with dense gradation are susceptible to strength loss during undrained cyclic loading 

within a few load cycles. 

As discussed earlier, freeze-thaw effects in base material can be detrimental to 

pavement performance, Koliso~a et al. (2002) studied the effect of freeze-thaw action on base 

course aggregates as a function of fines content with an emphases on suction, resilient 

deformation, and permanent deformation behavior for three aggregate materials in Finland. 

Results indicate that a significant increase in suction and frost heave action is observed with 

an increase in fines content above 5%. Adding bitumen to samples prevented frost heave at 

any fines content. Mr increased with increasing fines of 2.7%--10% for tests performed on dry 

samples. The Mr values for freeze-thaw samples were scattered and did not exhibit 

predictable behavior. However, permanent deformations increased significantly with 

increased fines from 3.9%-10, 7%. 
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Table 8. Summary of results (Cheung and Dawson, 2002) 

Dolomitic Limestone Granodiorite Gravel 
Property 

A B C Field Lab Field Lab Field 

~ Crushing 
strength 

Lo~,~, Moderate High 
_ _ 

Abrasion 
resistance 

Low Moderate High 

Angularity More Moderate Less (More Rounded) 

Surface texture Coarse ~ Coarse Fine 

Stiffness at 
40kPa confining 
pressure 

745 748 373 644 306 384 367 375 

Axial strain 2077 619 1245 -- 428 1160 1067 14055 

Solid content °l0 72 83 78 80 87 79 88 78 

intercept "c" 
(kP'a) 86 __ __ 54 -- 46 35 b 

Fr~ctian angle 
(~) 

46 __ __ 62 __ 53 63 48 

Rutting 
performance in 
field 

_ 
47mm at 
220 truck 

passes 

47mm at 
100 truck 

passes 

44mm at 4 
truck 
passes 

M~ from FVVD 

_ 

52 41 41 

* A —upper limit of gradation band (D ~ a= 0.06 mm. D30 = 0.19 mm) 
* B -- middle limit of gradation band (D~o = 0.085 mm, D30 ^ 1.63 mm} 
* C --lower limit of gradation band (D~o = 7.19 mm, D30 = 19.3 mm) 

Effect of Particle Morphology 

Particle morphology is also a contributing factor for base performance as particle 

interlock, water absorption, degradation etc., are highly dependent on morphological 

properties of particles. Cheung and Dawson (2002} Investigated the effect of particle 

morphology on engineering properties of different aggregates Including dolomitic limestone, 

granodiorite, and river gravel (Table 8). Higher cohesion, c, was observed in the dolomitic 

limestone which has high angularity when compared to gravel and granodiorite. In this case, 

cohesion is achieved due to locked-in stresses and interparticle moisture causing negative 

pore pressures. Cohesion values reported by Thompson and Smith (1990] shown in Table 4 

also indicate that crushed limestone attains higher cohesion when compared to gravel. 
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An investigation by the National Stone Association (Aggregate Handbook, 1996} on 

several aggregate types including raver gravel, crushed gravel, crushed stone, and mixtures of 

these matenals indicates that the shape of aggregate has a significant impact on strength 

characteristics. The 100% crushed limestone produced higher strength than all other 

mixtures. 100% raver gravel has the lowest strength. Thornton and Elliott (1988) provided 

similar conclusions: crushed limestone is about three times stronger than both crushed and 

uncrushed gravel even at higher fines content. A study by Hasping et al. (1993) shows that an 

open-graded material with 100% fractured faces results m higher Mr than an open-graded 

material with 88% fractured faces. 

Cheung and Dawson (2002) concluded that the consolidation behavior of aggregates 

depends on the particle angularity rather than on strength of individual particles. This is 

evidenced by higher friction angles, higher stiffness, and less axial strain m dolomitic 

limestone compared to gravel and granodionte (Table 8). Ismail and Raymond (2002) also 

indicate that the deformation of material does not necessarily depend on the hardness of the 

material. When two materials, marble (soft) and granite (hard), are first loaded repeatedly 

then loaded to failure, a higher ultimate strength can be obtained for the softer material. 

Thompson and Smith (1990) showed that the permanent deformation behavior vanes 

significantly between different types of aggregates (Table 4). Gravel products could not 

survive the standard conditioning loading of 45 psi deviator stress and 15 psi confining 

pressure, while crushed aggregate performed well. A reduced stress of 30 psi deviator stress 

and 15 psi confining pressure was used to characterize gravel materials. 

Cheung and Dawson (2002) compared the strength properties (Table 8) with a 

concept of solid content {%), which is defined as the dry density (kg/m3) divided by the 

specific gravity times 1000 (kg/m3). Results show that high solids content reduces plastic 

strains and increases strength. Cheung and Dawson (2002) also concluded that resilient 

modulus is an unrealistic parameter to evaluate the strength charactensrics of aggregate base 

as similar resilient modulus values were achieved for different aggregates tested in thus study 

(Table 8). 

The National Stone Association (Aggregate Handbook, 1996) studied the effect of 

particle size on strength by performing tnaxial tests on 3/S in., 3/4 m., 1 in., and 1 1/2 in. 
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maximum size crushed aggregate. Figure 9 shows that a greater load caiTying capacity is 

achieved far larger particle sizes. This behavior is believed to result from greater interlock 

between aggregates, particles acting as "obstacles" in the planes of failure, greater rigidity 

possessed by larger size aggregate, and particles experiencing less strain under a given 

normal and lateral pressure. Results from this study also show that percent fines to achieve 

maximum strength reduce with increasing particle size in swell-graded mix. 

Ismail and Raymond (2002) measured the degradation of material on repetitive 

loading for different aggregates and concluded that far a given open-graded material, 

degradation increases with decrease in maximum particle size. 

The Talbot equation (Equation 1) provides an estimate of maximum fines content 

required before coarse aggregates start floating in the fines (see Figure 4c) for well-graded 

mixtures. For an n-value of about 1/3, the optimum fines content is estimated at 9% for a 

0.75 in. maximum size aggregate, and only f °lo fora 2 in. maximum size aggregate. 

P = (dID)n (100) (1) 

where: 

P =percent passing sieve size "d" in inches, 

d =sieve size opening in inches for which the percent passing (P) is applicable, 

D = maximurr~ aggregate size in inches, 

n = an empirical gradation exponent (usually 0.45 for well graded mix). 

Effect of Type of Compaction 

Charles (1977) illustrated the importance of compaction on pavement base and 

subbase materials which can significantly impact performance of pavements. Compaction is 

defined as "the act or process of compacting; the state of being compacted; to closely unite or 

pack, to concentrate in a limited area or small space." Compaction is a process of particles 

being forced together to contact one another at as many paints as physically possible with the 

material. Density ~t is defined as "the quality or state of being dense; the quantity per unit 

volume," as the weight of solids per cubic foot of material. Density is simply a measure of 

an~.ount of solids in unit volume of material. Thus, density and degree of compaction differ. 
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Two aggregate bases may have the same density but different degrees of compaction. Thus, 

an aggregate base can e~ibit good performance with good compaction, but it may or may 

not exhibit good performance at its maximum density And the maximum density that is 

achievable is calculated based on standard lab procedures at a certain level of degree of 

compaction, which is true only when (a) the material tested m the laboratory is identical to 

the field material in all respects of engmeenng parameters, wYuch is not usual and (b) the 

same compactive effort is utilized to achieve compaction. Change in such factors can 

sigxuficantly change the density and render the calculated percent compaction meaningless. 

Laboratory compaction testing performed on base course aggregates m accordance with 

AASHTO T-180 (modified Proctor energy) shows a significant change m density and 

optimum water content with change m gradation in similar aggregates types. Therefore, use 

of reference density values correlated to gradation for compaction control of aggregate 

materials m field to avoid inadequate compaction is recommended. 
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Jones et al. (1972) studied the effect of compaction energy on the strength of an 

aggregate rnix. Results show that change in compaction energy from AASHTG T-99 to 

AASHTO T 180 almost doubled the CBR strength. A similar trend of variation was shown 

from a study conducted by the National Stone Association, as shown in Figure 10. Figure 10 

shows that the variation in CBR is significant when examined along with the change in 

compaction energy High quality dense-graded aggregates can even show a CBR value above 

100, and well-graded gravel (GW) typically have a CBR value of 30-80 and less well-graded 

gravel (GP GM, GC) typically develop lower CBR values from about 20-60 (Aggregate 

Handbook, 1996). 

Hoover (1967) conducted a laboratory investigation to ascertain a standard laboratory 

compaction procedure for aggregate base materials. Comparison between AA.SHTC~-ASTM, 

static compaction, vibratory compaction, and drop hammer compaction concluded that 

vibratory compaction is the best method for producing a uniform mix, controllable density 

minimizing degradation and aggregate segregation. A combination of 3600 cycle/min 

frequency, 35 lb surcharge weight, 0.368 min of amplitude, and 2 minutes of vibration was 

adopted, 
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Figure lo. Variation in CBR with density and change in compaction effort (Modified 
from Aggregate I~andbook,1996} 
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Influence of Aggregate Properties on Permeability of Pavement Bases 

As discussed earlier, the subject of drainage has been an integral part of pavement 

design. The drainability of a pavement base is measured using the coefficient of permeability 

(K), which defines the quantity of water that flows through a matenal for a given set of 

condirions (Aggregate Handbook, 1996). The quantity of flow through a given medium 

increases as the coefficient of permeability increases. 

K is defined as "the rate of discharge of water at 20 C under conditions of laminar 

flow through a umt cross sectional area of a soil medium under a unit hydraulic gradient" 

(Thornton and Leong, 1995). K measured m pavement bases is denoted as hydraulic 

conductivity, which has the same units as velocity and is expressed m amts of length per time 

(cm/sec or ft/day) (note: 1 cm/s = 2835 ft/day). Vanous properties that influence hydraulic 

conductivity of a pavement base include the (a) gadation and shape of aggregate; (b) 

hydraulic gradient; (c) viscosity of the permeant; (d) porosity and void ratio of the mix; and 

(e) degree of saturation (Das, 1990). 

Effect of Gradation and Shape of Aggregate 

According to Cedergren (1994), the life of apoorly-drained pavement is reduced to 

1/3 or less of the life of a well-drained pavement. The hydraulic conductivity increases up to 

40,000 times if the base material is composed of coarse open-graded aggregate of 0.5-1.0 in. 

size compared to sand. The range of hydraulic conductivity is recommended to be 10,000 

ft/day-100,000 ft/day for an open-graded aggregate base (Cedergren, 1994). 

A significant amount of research has been conducted on hydraulic conductivity of 

pavement bases with a wide range of material types and gradations. There are many 

empirical relationships available to estimate the hydraulic conductivity of a given material 

based on grain-size distribution. Some of these are summarized m Table 9 For uniform 

sand, Hazen (1930} proposed an empirical relationsYup to measure the hydraulic 

conductivity as shown m No. 1 of Table 9 Cedergren (1974) proposed two relationships to 

differentiate between crushed and rounded texture of aggregate, as shown in Nos. 7 and 8 of 

Table 9 Kenny et al. (1984) conducted several laboratory tests under laminar flow 

conditions on granular soils m which parricle sizes vaned from 0.074 mm to 25 4 mm and 
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proposed an equarion to determine the hydraulic conductivity as shown m No. 2 of Table 9 

Based on several experimental verifications, Shahabi et al. (1984) proposed a relationship to 

estimate the hydraulic conductivity considering gram size distribution and coefficient of 

umfornuty of the material, as shown in No. 3 of Table 9 Moulton (1980) proposed an

equation shown in No. 4 of Table 9 depending on porosity of the mix, particle size and 

percent passing a No. 200 sieve. This equation has been used since 1980 m estimatuig the 

hydraulic conductivity of pavement bases and has served well for dense-graded mixtures. But 

increasing use of more quantitative methods of base design necessitates more accurate and 

realistic models (Richardson, 1997). 

Richardson (1997) performed multi-regression analysis on various parameters 

influencing hydraulic conductivity including particle sizes, and effective porosity of the mix 

and developed equations shown m No. 10 through 13 of Table 9 Equations were developed 

using results reported for a wide variety of materials, and gradations by various researchers. 

Highlands and Hoffinan (1988) conducted m-situ hydraulic conductivity tests on 

pavement bases at five different sections. These test sections were prepared by the 

Pennsylvania DOT meeting the gradations listed m Table 5 Hydraulic conductivity test 

results aze shown m Table 10. Results indicate that the cement treated bases (CTB) and 

dense-graded (GD) bases are denser and less permeable. Asphalt treated base (ATB), open-

graded (OG) base, and highly permeable (HP) base are more permeable and have a hydraulic 

conductivity rating several orders of magnitude higher than cement treated and dense-graded 

mixes. Based on the results of this study, it was recommended to use OG drainage layer (see 

Table 5) between the wearing surface and a dense subbase to meet Pennsylvania permeability 

and stability requirements. 



www.manaraa.com

27 

Table 9 Empirical relationships to determine hydraulic conductivity 

No. K (units) Equation Proposed By Suitability 
loose sand and clean 

filter sands 1 

_ 
~ K (cm sec) 2

K = cDl p (c varies from 1 to 1.5) Hazen (1930) 

2 ~. mm2( ) ~. ~ cD25 (c vanes from 0.05 to 1) 
Kenny et a~' 

(1 ~~} Coarse sand 

3 K cm/sec ( ) K —1.2C o.~35 o.s9 
u ~ o 

f  3 l
a Shahabi et al. 

1984 ( ) 
Medium to fine 

sands + ~l e~ 

4 K (f~~day} 
6.214 x 105 X10 

7~n6'654 
~ 

Moulton 

~ 1980) Aggregates = 0.597 
P2oo 

5 K (cm~'sec) 
DS ~3C 

K Taylor { 1948} Soils = 
,u(1 + e) 

6 K (cmisec) K= ~ 3 Kozeny-
Carman E q 

Soils 2 koS ,u{l + e) 

7 K mf sec ( ) ~ ; 0. ~p 1 ~ ~ .4 
~ t oo~ 

Cedergren 
4 (197 ) Crushed a egate g~ 

8 K m/sec ( } K = 0.001 d -5~ l oo ~ 
~ Cedergren 

1.974 ( ) 
Round Aggregate 

9 I~ cm/sec ( } I~ =1.4e ~ k 0.85 Casa ande ~ 
Fine-medium clean 

sand 

10 ' K (erly sec} 10 K = 3.062 + 6.4 to + 1.905 to D g g~ g l o 
Richardson 

(1997) 
For k = 10-s to 10~ 

cm/sec 

11 I~. (cm/sec} 
K = --2.873 + 23.923 + 1.005D~ o 
-- 0.107P318 — 0.214P50 + 0.21 SPl 6 

Richardson 
(1997) 

For 
k > 0.1 cm/sec 
open-graded 

materials 

12 K (cm~sec} 
K = —0.024 + 5.573 — 0.024P318 
+ 0.004P 8 

Richardson 
(1997) 

For k = 0.1 to 1 
cmu sec 

13 K (cm/see) 
k = 7.137+12.521x1+0.411D10

~ — 0.192P3 ~ $ { 

Richardson 
(1997) Fork > 1 cm/sec 

Note: 
K = hydraulic conductivity or coefficient of permeability, 
~a~s = hydraulic conductivity at a void ratio of 0.85, 
Duo -- particle diameter at 10% passing (mrn}, 
c c~ C = constants, 
Cu -- coefficient of uniformity, 
e -- voi d ratio, 
y — unit weight of permeant, 
~ = effective porosity, 
n -- porosity, 
,u = viscosity of Water, 
S = specific surface areas
k© = factor depending on pore shape and ratio of length of actual flow path to soil bed thickness, 
Dr = effective particle diameter, 
P2~ _ %passing #200 sieve, 
P3f~ = %passing 3l8" sieve, 
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P8 — %passing #8 sieve, 
P16 — %passing # 16 sieve, 
dxoQ -- nominal size of aggregate m ~nm. 

Table 10. Summary of laboratory and In-situ hydraulic conductivity test results 
(Highlands and Hoffman, 1988) 

Base ty a P 
Laboratory hydraulic 
conductivity (ft/day) 

In-situ hydraulic conductivity 
(ft/day) -

K1 K2 
CTB 2.83 X 10'4 NR NR 
ATB 6.519 X 103 5.39 X 103 6.07 X 104
OG 2.15X104 774X103 2.39X104
HP 1.81 X 104 1 73 X 104 1.78 X 104
DG 1.22 3.97 X 101 1.79 X 10 ~ 

Note: K 1 and K2 =hydraulic conductivities measured in orthogonal 
directions; NR = No Results 

Miyagawa { 1991) conducted both Laboratory and in-situ hydraulic conductivity tests 

on a wide range of pavement bases in Iowa. Laboratory test results indicate that crushed 

Limestone has a higher hydraulic conductivity with a range of 7,000-36,900 ft/d.a.y compared 

to crushed concrete with a range of about 340-12,780 ft/day Later, ~n-situ hydraulic 

conductivity tests were conducted to validate the results obtained from laboratory testing. A 

procedure was developed to obtain a relative measure of in-situ hydraulic conductivity tests. 

The procedures consisted of coring out an approximately 4 in. diameter hole to a depth of 4-

5 in, filling the hole with one liter of water, and measuring the time taken to drain water from 

the hale. Compared to laboratory test results, in-situ tests produced lower measured hydraulic 

conductivities on the order of 20-1000 ft/day (Table 11). This reduction was believed to be a 

result of changes in gradation during compaction of the base material. 

Table 11, Summary of in-situ h~Tdraulic conductivity results (Miyagawa,1991) 

Location Material 
Average K 

(ft/day) 
Reduction 

in K1
Pottawattamie Crushed Concrete 41 8-310 
Cass Co. Crushed Concrete 70 5-180 
Hardin Co Crushed Concrete 516 1-25 
Poweshiek Co. Crashed Concrete 126 3-100 
Johnson Co. Crushed Stone 1004 7-1000 
Cedar Co. Crushed Concrete $9 4-140 
Cedar Co. Crushed Concrete 20 17-640 
Cedar Co. Crushed Concrete 390 1-33 
1 Calculated as the reduction of K from the obtained values in laboratory 
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Haipmg et al. (1993) conducted laboratory hydraulic conductivity tests on a wide 

range of aggregate base materials in Oregon. Gradations of materials reported in this 

investigation are provided m Tables 12 and 13. Both constant head and falling head 

permeability tests were conducted. Results show that the lower bound of gradation (see Table 

12) exhibits the highest hydraulic conductivity of about 3000 ft/day A significantly higher 

hydraulic conductivity is observed m 100% crushed faces compared to 88% crushed faces 

with similar New Jersey gradation (2376 ft/day to 770 f~/day respectively). The 100% 

fractured faces New Jersey gradation and proposed open gradation (see Table 13) resulted m 

similar hydraulic conductivities at around 2400 ft/day 

Table 12. Gradation and Constant Head Permeability Test results (Hasping et al. 1993) 

Aggregate with 88% fractured faces 

Sieve Size 
Existing Open 

Graded New Jersey 
Proposed 

Upper Bound 
.Proposed 

Lower Bound 
Existing 

Dense Graded 
1 1 2" ] 00 100 100 100 97.5 

1 97.5 97.5 100 100 80 
3,'4" 67.5 86 ~ 98 80 64 
1 /2" 56.5 70 85 60 54 
1 /4" 3 7.5 54 60 45 42 
#10 7.5 12.5 20 5 23 
#40 4 3 6 0 12 

#200 1 1.5 5 0 5 
k (f~/day) 971 770 226 3018 140 
Standard 
Deviation 322 138 42 370 64 

Table 13. Gradation and Constant Head Permeability Test results (Hasping et a1.1993) 

Aggregate with 100% fractured faces 

Sieve Size New Jersey 
Proposed Open 

Graded 
Existing Dense 

Graded 
1 1/2" 100 100 97.5 

1 " 97.5 100 80 
3/4" 86 89 64 
1 !2" 70 68 54 
1 /4" 54 53 42 
#10 12.5 13 23 
#40 3 3 12 
#200 l .5 2.5 5 

~ k (ftfday) 2376 2489 475 
Standard 

.De~~~ation 338 309 150 
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Kazmierowski et al. (1994) investigated the drainability characteristics of an open-

graded drainage layer {QGDL) in the field. The gradation specification of QGDL was in 

accordance with the ~3ntario Ministry of Transportation (90°/a to 100% material retained on 

4.75 nlrn sieve and a maximum of 2% passing ~To. 200). Hydraulic conductivity tests were 

conducted on QGDL untreated, cement treated, and asphalt treated test sections. Cares were 

obtained from test sections by wrapping in a paraffin wax and then tested in a constant head 

permeameter according to ASTM D2434, "Standard Test Method for Permeability of 

Granular Soils." The average hydraulic conductivity values obtained are summarized in 

Table 14. This stud concluded that all core samples met the standard requirement of 10"`' y 
cin/sec. The asphalt treated. CJGDL has slightly higher hydraulic conductivity than the other 

materials. 

Table 14. Hydraulic conductivity results (Kazmierowski et al. 1994) 

Material 
Average Hydraulic 

Conductivity (cm/sec) 
7.5 X 10 2Untreated GG DL 

Asphalt Treated QGDL (1.8°/©) 8.6 X 10"~ 
Cement Treated QGDL 5.9 X 10"2

Thornton and Leong { 1995} Investigated hydraulic conductivity for various 

aggregates used for pavement bases in Arkansas.lVlaterials tested included limestone, 

sandstone, igneous rock, and Razorrock chert. Table 15 lists the gradation requirements 

according to standard speciflcat~ons by the Arkansas DaT The influence of fines content at 

3%, 6.5%, and 10% were investigated. Hydraulic conductivity tests were conducted 

according to the U.S. Bureau of Reclamation standard for falling head test procedures, in a 

19 in. diameter by 91n. thick falling head permeameter. Final results were compared with the 

DRA.INIT program developed at the University of Illinois, which is based on the equation 

proposed by Moulton { 19$0) shown in No. 4 of Table 9 It was found. that the results 

obtained from the DRAINIT program are approximately 100 times less than the laboratory 

test results summarized in Table 16, It is clearly seen that an increase in fines content from 

3% to 10% reduced the hydraulic conductivity significantly in case of sandstone and igneous 

rock. 
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Table 15. Gradation of material used (Thornton and Leong, 1995) 

Sieve Size Percent Passing 
1 ~/a" ~ ~}0 

3/.~" 50-90 
##4 25-55 
#40 10-30 
#200 3-10 

Table 16. Summary of results (Thornton and Leong,1995) 

Type of Aggregate 

Percent Fines Used 
3% 6.5% 10% 

K (cm/sec} K (cm/sec} K {cm/sec} 
Limestone 5,52 E-03 3.48 E-03 2.49 E-03 
Sandstone 4.34 E-03 1.66 E-03 1.86 E-04 

Igneous Rock 4.53 E-03 1.57 E-03 8.36 E-04 
Razzorrock Chem 2.91 E-03 1.76 E-03 1.05 E-03 

Richardson (1997) reports hydraulic conductivity measurements on vanous 

aggregates in Missoun. Table 171ists the aggregate gradarions and results. Hydraulic 

conductivity tests for open-graded matenal(according to New Jersey DOT (NJ DOT) and 

Pennsylvania OGS (PA OGS gradation) and dense-graded material (according to Missouri 

DOT (MO DOT) gradation) were conducted in a rigid wall permeameter and a flexible wall 

permeameter, respectively Results are reported in Table 17 Material with PA OGS resulted 

in a higher hydraulic conductivity of about 990 ft/day compared to NJ DOT gradation at 790 

ftJday MO DOT dense graded mix resulted m a low hydraulic conductivity of about 1 ft/day 

compazed to other gradations. Comparison of observed values with estimated values by 

Moulton s equation (No. 4 of Table 9) showed that the estimated values are always under 

predicted up to one order of magnitude, for both dense and open-graded material. 

Table 17 Gradations used by Richardson (1997) 

Sieve 
Percent Passing 

NJ DflT PAOGS 1VIUDaT 
1" 100 100 100 

1/2" 75 68 60 
#4 50 47 30 

#.16 33 5 8 
#40 25 3 5 

#200 8 2 2 

Average K 
E (ft/day) 

1 794 992 
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Bowlers et al. (2003) investigated the drainability performance on a wide range of 

aggregate materials used for pavement bases in Missouri with MfJ DaT Type-5 gradation 

both in laboratory and field. The materials tested had fines content in the range of 12%-1 ~°/©. 

In-situ testing was conducted using a double ring infiltrometer. For comparison, laboratory 

tests were also performed using a flexible wall permeameter and constant head method 

according to ASTM D 5084, "Standard Test Methods for Measurement of Hydraulic 

Conductivity of Saturated Porous Materials using Flexible Wall Permeameter." Laboratory 

measurements ranged from 0.0008 ftlday to 8 ft/day In-situ results were 1 to 2 orders of 

magnitude lower values than the laboratory results. The variation in results is attributed to (a) 

the variation in compaction from Iab and field and (b) piping of fine particles in the 

laboratory testing. It was concluded that materials tested are highly impermeable, and when 

subs ected to undrained loading can lead to deterioration in a few load cycles. 

Effect of Hydraulic Gradient 

Hydraulic gradient is an important factor that affects the measurement of hydraulic 

conductivity and is also a key parameter in Darcy's equation. Head loss in a flow system is 

used to calculate the hydraulic gradient i =~h/L. In most soils where the flow is laminar, 

velocity is directly proportional to hydraulic gradient which is given as v a i. But non-

laminar flow conditions can exist in open-graded pavement base materials even at relatively 

low gradients (Moulton, 1980). Crovetti and Dempsey (1993) reported an interesting 

conclusion from the constant head permeability test conducted on an open-graded material. 

They found that there is a significant drop in hydraulic conductivity (up to approximately 

50%) as the hydraulic gradient is increased, This finding is contradictory with Darcy's 

assumption v a, i, thus indicating turbulent flow conditions. Excessive hydraulic gradients can 

be detected by plotting discharge velocity (v) vs. gradient (i). Darcy's law says that these two 

variables are directly proportional and that hydraulic conductivity is the slope of the line 

plotted. If at some point the slope begins to decrease with increasing gradient, then a change 

in flow from laminar to non-laminar can be identified (Richardson, 1997). 

Several researchers have provided modifications to Darcy's equation t© describe more 

closely the non-laminar flow conditions in granular materials. Fwa et al. 1988, provides a 
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general relationship to determine hydraulic conductivity under turbulent flow conditions as v 

=kin where "n" is equivalent to 1 for laminar flow conditions. Factor "n" is defined as the 

slope of the plot between log v and log i. However, there 1s a potential problem of movement 

of fines if the material is tested under turbulent flow conditions (Richardson, 1997). 

Effect of'Porosaty and Voad Ratio 

Porosity is the ratio of volume of voids to total volume for a given matenal. This is a 

function of relative density, and indirectly particle shape. In general, an increase m porosity 

of an aggregate mix increases the hydraulic conductivity However, the degree of 

connectivity of these pores (i.e. effective pores and measured as effective porosity), dictates 

the hydraulic conductivity of a material. Porosity can be greater in a mix with excess fines, as 

shown in Figure 5 but due to lack of mterconnectivity of pores the mix is relatively 

unpermeable. Usually for open-graded materials the effective porosity is the same as total 

porosity Moulton (1980) and Richardson (1997) have developed some empirical 

relationships with porosity as a key parameter to determine hydraulic conductivity shown m 

No. 4 and No. 10 through 13 of Table 9 respectively 

Void ratio is defined as the ratio of volume of voids to volume of solids present in a 

given material. There are many empirical relationships developed by researchers to 

determine hydraulic conductrvrty based on void ratio of the matenal> One of those is the 

Kozeny-Carman equation shown in No. 6 of Table 9 which }nelds a directly proportional 

relationship between void ratio and hydraulic conductivity (see Lambe and Whitman, 1979). 

Das (1990) states that in general an increase in void ratio increases the hydraulic 

conductivity However, this statement could be contradictory because Figure 5 shows that 

after a limiting fines content (CF) void ratio increases causing volume change, but reduces 

the hydraulic conductivity significantly Casagrande proposed a simple relation for the 

hydraulic conductivity of fine-medium-clean sand as shown in No. 9 of Table 9, based on the 

void ratio of material (see Das, 1990). 

Effect of Viscosity of the Permeant 

An equation reflecting the Influence of the properties of permeant was developed, 

known as the Kozeny-barman equation, shown In No. 6 of Table 9, to determine the 
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hydraulic conductivity of porous media. As a simplification for the Kozeny-Carman 

equation, Taylor (1948) proposed an equation as shown m No. 5 of Table 9 using 

Poiseuille s law Both equations indicate that permeability is directly proportional to the umt 

weight of permeant (Y), and inversely proportional to the viscosity of permeant (µ) (see 

Lambe and Whitman, 1979). 

Effect of Degree of Saturation 

The degree of saturation is def ned as the ratio of volume of water to the volume of 

voids. A decrease in degree of saturation of soil tends to decrease the hydraulic conductivity 

The hydraulic conductrvrty is significantly reduced if the degree of saturation is less than 

85%because the air bubbles block some of the pores (Thornton and Leong, 1995). 

Richardson (1997) also found that dunng flow through, partially saturated specimen air 

bubbles are created due to voids. They tend to block the flow of water, reducing the hydraulic 

conductivity 

Drainage Capacity of Pavement Bases 

Surface Infiltration 

The mad or sources of water in pavement systems are surface infiltration, ground water 

seepage, and melting of ice lenses. The drainage requirements determined in this section will 

account only for the infiltration caused due to rainfall. In locations where other sources of 

water are significant, adjustments to the drainage requirements maybe warranted. A 

complete pavement drainage system is typically composed of an aggregate base layer, 

longitudinal drains, and transverse outlet systems daylighted to surface drainage channels as 

shown in Figure 11 A positive drainage system should transport water from the-point of 

infiltration to the final exit (transverse drains) through material having high hydraulic 

conductivity and should eliminate any conditions that would restrict the flow (Moulton, 

1980). 

Infiltration of water into the pavement system is a complicated phenomenon. 

Theoretical transient flow studies m umfarm porous pavements provided insight into this 

problem (see Jackson and Ragan, 1974). However, estimating infiltration rates is still 
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difficult due to the non-umformrty of the surface. Methods for estimating surface infiltration 

rates in highway pavements are presented in the FHWA Highway Subdraanage Design 

Manual (Moulton, 1980). One method recommended by Cedergren et al. (1973) proposes 

calculating the infiltration rate based on precipitation rates (inches/hour) (Figure 12) and a 

coefficient depending on pavement type. The coefficient vanes from 0.33 to 0.50 for ACC 

pavements and 0.50 to 0.67 for PCC pavements. For Iowa, which has a precipitation rate of 

about 1.3 m. and using the coefficient suggested for PCC pavements, the infiltration rates 

would result m the range of 1.3 to 1 7 ft3/day/ftz Ridgeway (1976) found that the ingress 

channel condition (whether sealed or unsealed, or wide or narrow cracks/joints), and the type 

of aggregate base layer (whether open-graded or dense-graded) are key factors in defining 

the infiltration capacity of a~oint/crack. For high capacity Joints/cracks, high intensity and 

short duration storms are critical. Whereas for low capacrty~omts/cracks, storm duration is 

more important than intensity 

i 

Point of 
f of i ftr-ati on 

Longitudinal 
C rad e, g 

PCC Pavement layer 

Aggregate Base layer 

Subgrade 

Width of Drainage ~.ayer, Wp 

~ 
Drainage 
Path, L 

 Longitudinal 
Drains 

Cross 
Slope, S~ 

., 

Transverse 
Drams 

Figure 11. Typical cross-section showing drainage system in a PCC pavement (Moulton, 
1980) 
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Figure 12. Maximum 1-h duration/1-yr precipitation in the United States (After 
Cedergren et al. 1973) 

Ridgeway (1976) recommended a method (summanzed in the FHWA design manual) 

for estimating the surface infiltration based on total length of~oints/cracks per umt area of 

pavement surface and the infiltration capacity of~oints/cracks. For normal conditions, it is 

assumed that (a) the pavement surface layer is impermeable in uncracked locations; (b) 

continuous longitudinal ~omts separate at least two individual dnvmg lanes and separate 

outer dnvmg lanes and shoulders; and (c) transverse points or cracks are regularly spaced. 

Based on these assumptions, Equation 2 is suggested for calculating the surface infiltration 

rates per umt area of crack m highway pavements. An infiltration rate of a~oint/crack, I~, of 

0.22 m3/day/m (2.4 ft3/day/ft) is suggested for design. 

~'t = I 
~N+l W. ~ 

~ WP CS ~ 
(z) 
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Where: 

q; =infiltration rate per umt area (m3/day/m2), 

I~ =infiltration rate of crack (m3/day/m), 

W~ =length of transverse cracks/joints (m), 

Wp =width of the drainage layer (m), 

N =number of traffic lanes, and 

CS =spacing of transverse cracks or Joints (m). 

Although these two methods are based on empirical relationships, Ridgeway's 

approach is considered to be more appropriate because it is based on field measurements. 

Therefore, it is recommended that a uniform design infiltration rate be estimated using 

Equation 2 (Moulton, 1980). Crovetti and Dempsey (1993) also state that the suggested I~ 

value is a reasonably conservative value for pavements with open-graded bases. However, 

Cedergren s method is seen to be better correlated with western states where there is less 

precipitation compared to eastern states (Moulton, 1980). 

Flow Analysis 

Key factors that control the time to effectively dram the water include flow-path 

gradient, flow-path length, and hydraulic conductivity of the material. Based on the geometry 

of typical pavement bases, the flow of water is primarily horizontal. The flow-path gradient, 

S, is a key for horizontal flow analysis, which is a function of pavement geometry and may 

be obtained using Equation 3 Flaw-path length, L, is defined as the path of water flow from 

the point of ingression to the outlet. This length is a function of the cross slope, longitudinal 

gradient, and width of the drainage layer, and can be calculated using Equation 4. Using 

these relationships, it is seen that increasing the pavement cross slope increases the flow-path 

gradient and decreases the flow-path length at any given longitudinal gradient. Thus, the end 

result will be a reduction in drainage times (Crovetti and Dempsey, 1993}. Therefore, it is 

important to consider pavement geometry in an effective and economical design of a 

drainage Layer. 

S = S~ + g2 (3) 
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\ 2

L=Wp l+ g 
2 S~ 

Where: 

S =flow-path gradient (m/m), 

L =flow-path length (m), 

W =width of the drainage layer (m), 

S~ =cross slope (m/m), and 

g =longitudinal gradient (m/m). 

Determination of Draanage Capacity and Thickness 

(4) 

After the design infiltration rate, ql, ~s computed, the aggregate base must be designed 

to an optimal comb~nat~on of thickness (H) and hydraulic conductivity (k). Barber and 

Sawyer (1952) suggest determining the capacity of a drainage layer under steady state flow 

conditions based on geometry of the drainage layer, using Equation 5 This equation ~s an 

enhancement of Darcy's law by including the flow path gradient, S. This permits the 

determinat~on of required hydraulic conductivity of a drainage layer when values of the 

infiltration rate per unit area of crack, q1, thickness of drainage layer, H, flow-path length, L, 

and flaw-path gradient, S', are known (Moulton, 1980). 
~ ~~ 

q = qt xW~ = kH S+ (5) 
~ 2L~ 

Where: 

q =discharge capacity of the drainage Iayer (m3/day/m), 

k = permeability of the drainage layer (m/day), 

S =flow-path gradient (m/m), 

H =thickness of the base Layer (m), and 

L =flow-path length (m). 

Equation 5 is based on the assumption that the inflow Is uniformly distributed across 

the surface of pavement. To avoid any moisture retention ~n the base layer, proper drainage 
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conditions should be ma~ntalned by increasing its transmissibility (transrr~lssibility is defined 

as the product of hydraulic conductivity and thickness of base). This can be achieved by 

Increasing the thickness of base. However, sometimes increasing the thickness of base may 

not be economically feasible (Moulton, 1980). 

Casagrande and Shannon (1952) suggested a relat~onshlp for unsteady-state flow 

conditions (Equation 6) based on degree of drainage. The degree of drainage, U is defined as 

the ratio of volume of water drained once the rain stops to the total storage capacity of the 

drainage layer. Dunng the 1950's, a value of ts~ = 10 days (50% degree of drainage) was 

used in the design of base layers. If the time taken to drain 50% of the water ~s 10 days, it 

may take several months to drain the remaining water. According to AASHT~ (1993 }, 

drainage layers that take more than a month to drain water are rated as "VERB PrJCJR" For 

excellent drainage, AASHTC~ { 1993) recommended that the water is drained within 2 hours. 

There ~s no guidance provided on whether the drainage required ~s 50% removal or complete 

removal. Ridgeway (1982) suggested that the time for complete or 95°~° drainage should be 

less than 1 hour. Carpenter { 1990) indicated that the longer the nlatenal remains above 85% 

saturation, the worse it will perform under traffic. Barber and Sawyer (1952} presented a 

chart {Figure 13 ), to determine the time factor, T~, for any degree of drainage, U for a given 

slope condition, S, based on Equations 7 and 8. A time factor that is determined at any degree 

of drainage may be used to determine the required hydraulic conductivity using equations 

shown in Figure 13. 

neL2 
t50 2k(H + SL) ~6)

For U > 0.5 

Tf = (c / 2) S+S*ln ~2S-2US+1~
~ (2 — 2U)(S + 1) ~ 

S ~ 2 * In (~> 
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For U <0.5 

Tj = (cl2) ZUS —S''2 *ln ~S + 2U~ 
~ S )~ 

($> 

where: 

n~ =effective porosity of aggregate base material, 

U =degree of drainage or percent of drainage that has occurred which is given by the area 

drained divided by the area that can be drained, 

S =slope index = Hl(L tan S), 

T =time factor, 

t =tame for drainage, U, to be reached (days}, 

c =-  geometrical coefficient = 2.4-0.8/SIi3

Therefore, it is important to note that the required hydraulic conductivity of a 

pavement base layer required to effectively drain the infiltration is not a fixed value. ~'he 

required hydraulic conductivity is a function of several factors, including: 

• infiltration rate, 

• spacing of cracks on surface layer, 

• width of pavement, 

• number of lanes, 

• longitudinal gradient of pavement, 

• cross slope, 

• gradation of aggregate in the base layer, 

• thickness of base, and 

• degree of drainage required. 

A eorriputer program entitled "~'avernent Drarnage Estznrcato>" (PDE l~erszon 1 0) " 

was developed during this study to estimate the required hydraulic conductivity of an 

aggregate base layer as a factor of the various factors listed above. A detailed discussion of 

this program is provided later in this report. 
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Stability of Pavement Bases 

An aggregate base layer should possess high resistance to consolidation under 

repetitive traf~ c loading. At the same time, it should meet the minimum drainage 

requirements discussed in the previous section. Thus, it 1s important to consider the 

relationship between strength or stability and permeability 

In 1985, a Transportation Research Board cor~unittee distributed a questionnaire to a1i 

state agencies in United States, in order to better understand the structural contribution being 

assigned to permeable aggregate base (PAB) layers. It was noted that 47% of the responses to 

the questionnaire indicated that a layer coefficient of 0.14 {as specified by AASHT~) was 

being used in the design of a permeable aggregate base layers. The remaining 53% of the 

responses indicated a layer coefficient value in the range of 0.08 to 0.18. Similarly NAPA 

distributed a questionnaire in 1990 which indicated that 11 states assigned no structural value 

for PAB layers while 10 states assigned a layer coefficient of 0.10 to 0.14. For an asphalt-

stabilized aggregate base, 6 states assigned a value equal to 0.2 to 0.3 (Minnesota D►C~T 

1994). Using Figure 14, an AASHTa layer coefficient of 0.14 is approximately equivalent to 

a CBR% value of about 100%. 

In lieu of layer coefficient values, Burnham (1997) suggests using Penetration Index 

{PI} determined from Dynamic Cone Penetrometer (DCP) testing as a raped quality control 

measure to characterize pavement bases in the field. It was recommended that DCP tests be 

conducted to ensure that the PI is Less than 19 mm per blow (0.75 inches per blow] on a 

pavement base immediately after compaction. Further, it was found that the PI value 

dramatically decreases under traffic loading and as the material's set-up time increases. 700 

DCP tests were conducted on base/subbase and subgrade layers, to find a limiting PI value 

with regard to the pavement performance. A limiting PI value of 5 nvm~blow was 

recommended for Class 3 special gradation (Table 18) used in pavement bases in Minnesota. 

Using the CBR-PI relationship proposed by the Army Corps of Engineers (No. 4 of Table 19} 

the limiting CBR value of an aggregate base with Class 3 gradation would be approximately 

50%. 
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Table 18. Class 3 special gradation used by Minnesota DOT (Burnham, 1997) 

Total Percent 
Passing Sieve Size Mass 3 

75 mm (3 ") --
50 trim (2") l0U 

19.0 mm (3I4") -- 

4.75 mm (#4) 35-100 
2.00 mm (# 10) 20-10® 
425 µxn {#40) 5-50 
75 µm (#200) 5-10 

0.20 
0.1$ 

0.16 
0.14 

0.12 
0 10 
0.08 
0.0~ 
0.04 
0.02 
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Figure 14. Correlation chart for estimating CBR and Modulus (psi) for bases 
(Reproduced from Van Til et a1. 1972) 

Ese et al. (1994), observed the detenorahon of pavements with respect to different 

pavement and material strength properties m Norway DCP tests conducted during thawing 

periods provided a good correlation with the existing pavement conditions. A PI value of 2.6 
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mmlblow was found to be "critical" for the stability of a pavement base. This PI value is 

approximately equal to 100% CBR (Equation No. 4 of Table 19). Bases having a PI value 

higher than 2.b mm/blow were rated "POOR." However, all the base materials tested during 

this research were well-graded materials. 

Based on the general agreement between PI and percent compaction, the Minnesota 

DGT has revised the limiting penetration rates fora 12" thick aggregate base layer as follows 

(Siekmeir et al. 199$): 

a) 15 mmlblow in the upper 75 mm (3.0 in), 

b) 10 n~inlblow at depths between 75 and 150 mm (3 and ~ in), and 

c) ~ nrlm~blow at depths below 150 mm (6 in). 

Ammi (2003) concludes that the use of DCP for materials with a maximum aggregate 

size larger than 2 m. is questionable. And ali the published relationships between PI and 

strength parameters are only applicable to certain material types and conditions, but not to all 

cases. Various strength parameters that can be determined from measured PI value. Their 

relationships are listed m Table 19 

Another approach to charactenzmg pavement bases m-situ is Falling Weight 

Deflectometer (FWD) testing. Kazmierowski et al. (1994) conducted FWD testing on 

untreated, asphalt treated, and cement treated open graded drainage layer (OGDL) sections. 

The OGDL material treated with cement at the rate of 180 kg/m3 resulted m deflections of 

about 0.5 mm whereas OGDL material treated with 1.8% of asphalt exhibited deflections of 

0.64 mm. Untreated OGDL material resulted m deflections of 0.74 mm. Highlands and 

Hoffman (1988) also concluded that cement treated base (CTB) performed well by producing 

small deflections of about 0.13 mm, when compared to other base materials (for gradation 

see Table 5). The asphalt treated base (ATB), untreated open-graded (OG) base, and high 

permeable (HP} base exhibited similar deflections of about 0.17 mm. Interestingly a test 

section with dense-graded (DG} aggregate base showed significantly higher deflections of 

about 0.5 mm, when compared to all other materials. 
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Notes for Table 19 

A° the angle of cone in degrees, 
B the diameter of the cone In mm, 
C the weight of the hammer m kg, 
CBR California Bearing Ratio (°lo), 
PI Penetration Index from DCP (mm/blow), 
PI' Penetration Index at 300 mrnlblow, 
DCPI Dynamic Cone Penetration Index (inches/blow), 
E Modulus (MNlm2), 
Mr Resilient Modulus (psi), 
UCS Unconfined Compression Strength (KPa}. 
lIf 4.6 kg mass is used the PI 1s multiplied by 2. 

Chen and Bilyeu (1999) conducted a case study dunng the evaluation of the 

GeoGauge for compaction control in the field. This study proposed a performance rating for 

pavement bases depending on the stiffness (K) and modulus (E) obtained from GeoGauge as 

shown in Table 20. 

Table 20. Performance rating based on GeoGauge results (Chen and Bilyeu,1999) 
Base quality Stiffness (MN/m) Modulus ~MPa) 

Weak <10 <87 
Good 18-24 15b-208 

Excellent >30 >~60 

The American Concrete Paving Association (ACPA) provided survey results 

summarizing the gradations used by different state agencies for base materials under PCC 

pavements (Figure 15). Twenty-four states use permeable (treated/untreated) bases 

considering the importance of both stability and permeability in pavement performance. 

Thirteen states use granular bases (dense-graded), five states use asphalt-treated bases, and 

six states use cement-treated or lean concrete bases to increase stability 

Brown (1997) suggests that for the design of pavements, knowledge of resilient 

properties of a material and their tendency to develop plastic strains under repetitive loading 

is a key parameter. Further, Brown (1997) notes that rt is surpnsmg that CBR, which is an 

indirect measure of undramed shear strength, has been used m charactenzmg the 

base/subbase and subgrade materials by most pavement engineers. It is important to 

recognize that the shear strength of material is not of direct interest m design, Uut rather the 

elastic modulus of the material and the behavior under repeated loading is of main concern. 
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A detailed study by Hight and Stevens (1982) shows that CBR does not relate to stiffness of 

soils at low strains, which is of primary interest in pavement design. Dawson and Plaistow 

(1996) further showed that it is important to consider resilient characteristics of the granular 

base layer as well as the subgrade. 

The literature review clearly indicates that the requirements of both stability and 

permeability are still a point of debate. 

Granular 
Asphalt-treated 

~~ Cement-treated or Lean Concrete 
D Permeable (treated or untreated) 

Figure 15. US Map showing gradations used by different state DOT's under PCC 
pavements (Courtesy of ACPA, 2001} 

Survey on Gradations by State DOT's 

A detailed survey on gradations suggested by vanous state and federal agencies for 

aggregate bases is documented m this section (see Appendix A for values}. Data obtained is 

provided m Figures 17 through 23 with companson to the Iowa DOT gradation for 

permeable bases (Gradation No. 4121 }. The Iowa DOT middle gradation line plotted m all 

figures refers to the middle values of the specified gradation band. Vertical bars m the figures 

show the upper and lower limits of the gradation. 

Figure 16 shows the gradations used by varous state DOT's. Few states had more 

than one gradation specified for aggregate bases under PCC pavements. Hence, it is divided 
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into three groups: (a) only permeable bases; (b) only dense-graded bases; and (c) both 

permeable and dense-graded bases. This figure shows that 6 states use only permeable bases, 

11 states use only dense-graded bases, and 24 states use both dense-graded and permeable 

bases. 

Representatives from 8 states (including Iowa) attended the Sty' Midwestern Pavement 

Design Workshop held to Iowa, where they discussed base type and thickness requirements 

under PCC pavements. At the workshop, 4 states use an open-graded base on top of a dense-

graded subbase, 2 states suggested using only dense-graded base with no compromise on 

stability, while 1 state suggested using cement-treated or asphalt-treated permeable base to 

improve stability while maintaining high permeability Iowa suggested using only permeable 

bases (untreated) under PCC pavements. 

Q Dense-Graded bases 
°` Permeable bases y, 

Both Dense-Graded and Permeable 
Not Krx~nrn 

Figure 16. Gradations used by different state DOT's under PCC Pavements 

From the above discussion and Figure 16, it is clear that different state agencies have 

different opinions on why, when, and where a permeable base or adense-graded base should 
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be used. 

Figure 17 compares the Iowa DOT gradation with the mean upper and lower limits of 

gradations specified by vanous state and federal agencies. Iowa DOT gradation falls within 

the mean upper and lower limits. The lower limits of Iowa DOT gradation are very low 

compared to the mean values, whereas the upper limits are within the range. 
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Figure 17 comparison of Iowa DOT middle gradation with mean upper and lower 
limits of gradations by other state and federal agencies 

Figure 18 compares the Iowa DOT gradation with AASHTO No. 5 7 gradation. This 

shows that the AASHTO No. 57 is more open-graded. AASHTO IVTo. 57 gradation does not 

specify the amount of fines passing No. 200 sieve. FHWA recommended AASHTO No. 57 

gradation to constructing many pe~~~ieable aggregate bases m United States (Freeman and 

Aderton, 1994). 

Figure 19 shows the companson between the Iowa DOT gradation and the gradation 

specified by National Stone Association (~TSA) (Aggregate Handbook, 1996). This indicates 

that the Iowa DOT gradation ~s very similar except with particles passing No. 50 sieve (0.3 

mm). NSA does not specify the amount of fines passing No. 200 sieve. 
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Figures 20 and 21 compare the Iowa DOT gradation with the gradations specified by 

Army Corps of Engineers for open-graded (OG) matenal and rapid draining (RD) matenal, 

respectively Gradation for OG matenal is similar to AASHTO No. 57 gradation. RD 

matenal is less open-graded compared to OG matenal, and is proposed with a purpose of 

promoting stability while sacrificing permeability (Army Corps, 1992). Figure 20 indicates 

that the Iowa DOT gradation does not fall within the limits of OG matenal, whereas it is well 

compared to RG matenal (Figure 21}, except for the matenal passing No. 50 sieve. 
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Figure 20. Compar2son of Iowa DOT gradation with Army Corps of Engineers specified 
Open-Graded (OG) material gradation 
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Figures 22 and 23 compare the Iowa DOT gradation with ASTM D2940, "Standard 

specification for graded aggregate matenal for bases or subbases for highways and airports," 

and ASTM D 1241, "Standard specification for matenals for soil-aggregate subbase, base, 

and surface courses," gradations respectively These figures indicate that the Iowa DOT 

gradation is more open-graded than ASTM D2940 gradation, while the percent fines passing 

No. 200 is similar. The Iowa DOT middle gradation line lies within the gradation band of 

ASTM D 1241 
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Figure 23. Comparison of Iowa DOT gradation with ASTM D 1241 gradation 

Stability and Permeability Measuring Techniques for Aggregates 

laboratory Measurement for Stability of Aggregates 

Repeated Load Tnaxial Testing 

Repeated load tnaxial testing provides the matenal response measurements that 

simulate dynamic traffic loading conditions, which can be used m pavement design. Resilient 

modulus can be determined from this test, which provides a basic constitutive relationship 

between stress and defo~~~iation of matenal under repeated dynamic axial stress. This test zs 

superior to static tests such as the CBR or the Texas Tnaxial test. This test was standardized 

as AASHTO T 274, but was withdrawn in 1990 (Aggregate Handbook, 1996). 

Later in 1996, FHWA developed a standard test procedure, LTTP Protocol P46, to 

determine the resilient modulus of unbound granular base/subbase materials and subgrade 

soils. Tests can be conducted to simulate stress states under repetitive pavement traffic 

loadings. Stress levels used on specimens are based on the location of the specimen within 

the pavement structure. A repeated axial cyclic stress of fixed magnitude, load duration (0.1 

second}, and cycle duration (1 second} is applied to a cylindrical test specimen. During 
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testing, the specimen is subjected to a dynamic axial cyclic stress and a static confining stress 

provided by means of a tnaxial pressure chamber. The total resilient (recoverable) axial 

deformation of the specimen is measured and used to calculate the resilient modulus (LTTP 

1996). 

Tnax~al Shear Test 

Tnaxlal testing is a fundamental test to characterize soils and aggregates. The 

Aggregate Handbook (1996) summanzes the procedure for the slow tnaxial shear test. A 

specimen prepared at the target density and moisture content is encased in a membrane, and 

subjected to a constant all-round confining pressure, 6 3. The specimen is then loaded with 

increasing axial stress until failure at a slow axial strain rate in the range of D.5 to 2 in/in/min. 

Axial strain is determined by dividing axial deformation with the distance over which the 

deformation is measured. Deviator stress (61 63} and axial strain data is measured during 

testing to calculate the shear strength of the specimen. Typical confining pressures used 

dunng this test vary in between 3 and 40 psi. 

If the applied axial strain ranges from 1 a-17 inlinlsec, it is considered a rapid shear 

test. Rapid loading is believed to be more representative of loading conditions that exist in 

eld, compared to the conventional slow tnaxial shear test. This test is commonly referred. to 

as the "Illinois rapid shear test" (Aggregate Handbook, 1996). 

Texas Triaxial Test 

The Texas Tnaxlal Test was developed by Texas Department of Highways and 

Transportation to evaluate the performance of soil and soil-aggregate mixtures. This test is 

similar to the conventional tnaxial test but vanes in the sample dimensions. A specimen of 6 

in, diameter and 8.5 in. high is compacted in four lifts in a metal mold at the target moisture 

content and density The specimen is carefully finished with hand tools, placed on a porous 

stone, and then extruded from the mold. The specimen, with a porous stone on each end, is 

then placed into a steel tnaxial testing cell of 6.75 in. diameter and 12 in. high. text, the cell 

is lowered into a pan of water to increase the degree of saturation in the sample by capillary 

absorption and left overnight. Later, a constant confining pressure, 63, is applied by inducing 
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air pressure between the membrane and cell wall. A~cial loading at the rate of about 0.15 

in/min is applied on the specimen until failure occurs. Tests are performed at different lateral 

confining pressures. Mohr circles with failure envelopes are then prepared to determine the 

sheaz strength of sample (Aggregate Handbook, 1996). 

Laboratory California Beanng Ratio (CBR) Test 

The California Beanng Ratio (CBR) is an indirect measure of undramed shear 

strength and is one of the commonly used parameters m characterizing the stability of 

aggregates m pavement bases. The CBR test measures the resistance of material to a 

punching shear failure. This testis performed m accordance with ASTM D 1883, "Standard 

Test Method for California Beanng Ratio of Laboratory-Compacted Soils." The maximum 

aggregate size used m this test is 0.75 m. The test specimen is compacted in a 6 m. diameter 

proctor mold to its target density and moisture content. After three or more representative 

samples are prepared, a cylindrical piston of 2 in. diameter is pushed into each specimen at a 

constant rate of 0.05 in. per minute. The CBR value is calculated by dividing the force on the 

piston with a standard reference load at respective penetrations (ASTM D1883). 

An advantage of the CBR test is that rt is a relatively rapid test method compared to 

all other laboratory tests used to evaluate the strength properties of aggregates. However, 

CBR testing has its own limitation m that relating CBR values to stiffness is difficult. 

In-Situ Measurement of Stability of Aggregate Base 

In-situ CBR Testing 

In-situ CBR. tests are occasionally used for evaluation of pavement bases. This test 

method is described in ASTM D4429 "Standard Test Method for California. Bearing Ratio of 

soils in place," but was withdrawn in 2002. Tlus test method is applicable only when (1 }the 

degree of saturation of the material is SO% or greater; (2) the material is coarse grained and 

cohesionless; and (3) the material has not been modified by construction activities during the 

2 years before the test. Subsequent treating, disturbing, handling, compaction or change in 

water content of the material invalidates the results (Aggregate ~Iandbook, 1996). 
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Dynamic Cone Penetrometer (DCP) Test 

DCP is an instrurrient designed for rapid m-situ measurement of the structural 

properties of existing pavements with unbound granular materials (Ese et a1.1994). The cone 

penetration is inversely related to the strength of the material. DCP test is conducted m 

accordance with ASTM D6951, "Standard Test Method for Use of Dynamic Cone 

Penetrometer in Shallow Pavement Applications," which was first released m 2003 This test 

mvoh~es measurement of penetration rate per each blow of a standard 8 kg (17.61b) hammer, 

through undisturbed and/or compacted materials. Measured penetration is usually expressed 

as Penetration Index (PI), which has units of length of penetration per blow (mm/blow or 

m/blow). Numerous DCP tests have been conducted by researchers on different materials, 

and various equarions have been proposed to correlate PI with strength properties such as 

CBR, resilient modulus (Mr), unconfined compressive strength (UCS), as shown m Table 19 

The primary advantages of this test are its availability at lower costs and ease m collecting 

and analyzing the data rapidly 

Clegg Impact Hammer Test 

The Clegg Hammer was developed by Clegg dunng the late 1970's. This test was 

standardized m 1995 as ASTM D5874, "Standard Test Method for Determmat~on of the 

Impact Value (IV) of a Soil." Ties is a supple and rapid m-situ test that can be performed on 

base/subbase and subgrade materials. Clegg Impact Value (IV) is measured as the rebound 

for 4 blows of a standard 4.5 kg hammer. IV is correlated to CBR using various empirical 

relationships developed by researchers depending on the type of soil. Clegg (1986) proposed 

the relationship: CBR = (0.24 IV + ~ )2 This test method is suitable for evaluating the 

strength characteristics of soils because soil-aggregates have a ma~cimum particle size less 

than 1.5 in. (ASTM D5874). 

GeoGauge Vibration Test 

The GeoGauge is a 221b electro-mechanical instrument invented by Frank Berkman 

and developed by Humboldt Mfg Co. The GeoGauge provides a direct measure of m-situ 

stiffness (MN/m) and modulus (MPa). This test is a simple non-nuclear test for soils and 
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granular materials that can be performed without penetrating into the ground. A Poisson s 

ratio of 0.35 is set as a standard in this Instrument to calculate Young's modulus from 

stiffness. FHWA is administering a pooled funded study to validate use of the GeoGauge for 

compaction control in field. The modulus and stiffness values obtained from GeoGauge have 

been compared to a plate Load modulus at 57 saes, which shows a linear regression line with 

an R2 value of 0.824 (Briaud, 2003). 

Falling Weight Deflectometer (FWD) Test 

The FWD test is a simple and rapid non-destructive test performed according to 

ASTM WK.2080, "Standard Guide for General Pavement Deflection Measurements." This 

test does not entail removal of pavement materials, and is therefore often preferred over 

destructive methods. In addition, the testing apparatus is easily transportable. Layer moduli 

can be "back-calculated" from the observed dynamic response of the pavement surface to an 
impulse Load. FWD results are often dependent on factors Including the particular model of 
the test device, the specific testing procedure, and the method ofback-calculation (FAA, 

2003). 

Laboratory Permeability Testing 

Investigating the hydraulic conductivity properties of aggregates is essential m 

performing drainage analysis pnor to construction of a base. There are two standard methods 

used to determine the hydraulic conductivity (a) constant head permeability tests; and (b) 
falling head permeability tests. Considering the limitations of typical lab-scale permeameters, 

vanous researchers have proposed new large scale permeameters as discussed below 

Constant Head/Falling Head Permeability Testing 

Constant head testing is performed according to ASTM D2434, "Standard 1Vlethod for 

Permeability of Granular Soils (Constant Head}," to determine the hydraulic conductivity 
under laminar flow conditions of water through granular soils. The mold used for testing 

should have a diameter approximately 8 to 12 times the maximum particle size. The porous 
disk used in testing should have a ,greater permeability than that of the soil specimen with 

openings no larger than 10% finer size, to prevent movement of finer particles (ASTM 
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D2434). The quantity of flow at the outflow end at a particular constant head is measured to 

determine the hydraulic conductivity using Darcy's equation. In order to limit consolidation 

influences during testing, this procedure is limited to disturbed granular soils containing not 

more than 10% fines passing a No. 2~0 sieve. Falling head permeability tests need a similar 

setup as constant head test. But methods for performing the test vary while testing under 

falling head, the sample is saturated and water is allowed to flow through the sample, and 

change in time with head ~s observed. Hydraulic gradient versus velocity of flow is plotted to 

calculate the hydraulic conductivity 

Large Scale Permeameters 

Vanous large scale laboratory permeameters have been developed within the last few 

decades to determine the hydraulic conductivity of aggregate base matenals. Head (1982) 

developed a large scale permeameter with dimensions of 16 in. diameter and 34 in. long. This 

permeameter was used for aggregates with gradation having 3 in. maximum size. The 

matenal is compacted or vibrated m the cell, and a water supply tank of 9001iters capacity 

with several outflow levels is connected to the permeameter. This test is sunilar in principle 

to the standard laboratory permeability test, but represents more realistic conditions by 

allowing larger aggregates. 

Jones and Jones (1989) introduced a horizontal permeameter to measure the hydraulic 

conductivity of aggregates used in drainage layers. This permeameter works for material 

having D50 up to 1.2 m. The permeameter cell is of dimension 39.37 m. x 11.8 in. x 11.8 in. 

where the sample is compacted using a vibrating hammer. A1id with bar stiffeners and 

neoprene foam placed on top of the aggregate surface is used to seal the top of the 

compaction mold. After the specimen is saturated, tests are conducted at various hydraulic 

gradients. Test results show a satisfactory basis for the measurement of hydraulic 

conductivity However, further investigation was suggested to develop a repeatable and 

reproducible test method. 

Similarly, Chapuis et al. (1989) developed a horizontal permeameter to measure the 

hydraulic conductivity of granular and sandy soils. Dimensions of the permeameter were 5.9 
in. x 5.9 m. x 11.8 in. The design details were compatible with those of the vertical 

permeameter recommended by ASTM D2434, except a flexible rubber membrane was used 
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on the top of compaction mold, to provide a good seal against leakage. After the sample is 

saturated using de-aged water, tests are conducted at various hydraulic gradients. 

Randolph et al. (2000) also developed a horizontal permeameter to measure the 

hydraulic conductivity of granular materials. A sample is compacted vertically and the 

measurement of hydraulic conductivity is done horizontally representing field conditions of 

vertical compaction and horizontal movement of water in bases. The cross sectional 

dimensions of the permeameter mould are 12 in. x 12 in. x 18 in. long. This permeameter cell 

has a perforated plate with 0.35 in. diameter holes both at the Inlet and outlet end of the flaw 

Flexible closed-cell polypropylene foam sheets are glued to all sides of the sample cell to 

ensure na leakage in the system. Water chambers are attached with pieozometers at the 

outflow and Inflow end to measure the head loss during flow Using the measured head loss 

and the quantity of water flowing through sample, hydraulic conductivity of the material is 

determined using Darcy's equation. 

In-~i~u Hydraulic Conduct~lvily Testing 

Construction operations may sig~uficantly alter the material properties from that 

which zs tested m the laboratory Hence, m-situ hydraulic conductivity testing provides better 

m-sights to evaluate the performance of pavement bases. There are a few m-situ hydraulic 

conductivity test methods that were developed and evaluated. 

Moulton and Seals (1979) developed a Field Permeability Test Device (FPTD), which 

uses a velocity measurement technique principle. A schematic diagram of the measurement 

system is shown m Figure 24. The FPTD device consists of three mayor subsystems: (a) the 

reservoir and pressure subsystem; (b) the control and measurement subsystem; (c) the plate 

and probe subsystem. Water is supplied from the reservoir and the difference m head 

between two probes, Oh, for a distance of travel L, in time, t seconds is recorded. If porosity 

of the material, n, is known, Equation 9 may be used to determine the hydraulic conductivity 

k. 

k= 
L2 n 
tt~h 

(9) 
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Where: 

L =Probe Spacing (cm), 

Oh =Head Loss (cm), 

t =time of flow between probes (sec), and 

n =porosity 

Manometer for Oh 

Micro ammeters 
and stop watch 

~ ,2 ~ ' ̀ ~ ~ ~ Sense Probes Ba se o r Subbase ;• - . ~~ ~.w .. . . ~ ,:: n9 

Water and electrolyte ~ntection probe 
~~  

Figure 24. Schematic diagram of FPTD (Moulton et al. 1979) 

Fernuik and Haug (1990) describe in-situ hydraulic conductivity test methods for clay 

fill liners, which included (a) the sealed single-nng infiltrometer (SSRI) test; (b) the sealed 

double-nng infiltrometer (SDRI) test; and (c) the air entry permeameter (AEP) test. 

SSRI is a device used to measure the rate of infiltration (Figure 25), which can later 

be used to determine the hydraulic conductivity SSRI does not have standard dimensions. 

Fernuik and Haug (1990} used two different SSRI's of 10.25 in. and 24 in. diameters by 8.25 

in. and 6 in. high, respectively SSRI is installed by hacking the steel nng smoothly into the 

soil or by setting it into apre-excavated circular trench. The narrow zone immediately 

adjacent to the inside of the ring is filled with bentonrtic grout. This prevents escape of water 

down along the sides and under the ring. Loose sand and a steel plate are placed over the test 

area to prevent erosion of the liner. After the test setup is ready water is filled rapidly up to a 

head of approximately 24-28 in. and the quantity of water infiltrating the soil from the 
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graduated cylinder is measured. The depth of infiltration Lf is determined using the volume 

of permeant, porosity dry density, degree of saturation, and the area of soil. Thus, hydraulic 

gradient can be calculated using Equation 10 and substituted in the Darcy's equation 

(Equation 11) to determine the hydraulic conductivity However, this test assumes that the 

suction pressures developed dunng flow of water in unsaturated regions of soils is negligible 

(Fernuik and ~Iaug 1990). 

i= 
H+L~~ 
Lf

Q=kcA 

Where: 

i =hydraulic gradient (cm/cm), 

H =height of water in the mfiltrometer (cm), 

Lf =depth of infiltration (cm), 

A =area of soil being tested (cm2), and 

Q =flow rate (cm3/sec). 

The SDRI test maybe performed in accordance with A5TM D5093, "Standard Test 

Method for Field Measurement of Infiltration Rate Using aDouble-Ring Inflltrometer with a 

Sealed-Inner Ring." Test setup for SDRI is shown in Figure 26. Full penetration of water 

through the liner eliminates sources of error associated with soil suction and unsaturated 

hydraulic conductivity that persist in SSRI tests. The hydraulic gradient in this test is given 

by Equation 12, and substituting it in Darcy's Equation (Equation 11) determines the 

hydraulic conductivity The SDRI typically has inner and outer nngs of 72 in. and 144 in. 

diameter and a height of 6 in. and 3 8 in. respectively A modified SDRI with bigger 

dimensions is also available. Test setup for SDRI is similar to the SSR.I in most aspects, 

except that the SDRI has two nngs. The area adjacent to the outer nng is sealed with 

bentonitic grout to ensure that no leakage occurs. A uniform water level in the graduated 

cylinder is maintained during the test, and the flow rate within the inner ring is determined by 
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measuring the quantity of water required to keep the level constant (Fernuik et al. 199Q}. 

However, as per ASTM D5093 SDRI ~s limited. to soil with a hydraulic conductivity ~n the 

range of 10-~ to 10-10 cmisec. 

Graduated ~ 
Cylinder 

Reservoir Supply --~ 

Soil Lmer 

Plexigiass Lid 

~ Rini 

H 

Lf 

Figure 25. Sealed single-ring ~nfiltr©meter (SSRI} (Fernuik and Hauga 1~9' ;~ 

Figure 26. Seated double rub infiltr©meter (SORT} (Fernuik and Haug, l99(~} 
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Bouwer (1966) proposed using an Air Entry Permeameter (AEP} to measure the in-

situ hydraulic conductivity of clay fill liners (Figure 21). The AEP is sunilar to SSRI m 

design and operation in that the volurnetnc fluac of water entering the soil is used to calculate 

the saturated hydraulic conductivity in the unsaturated zone. Tests using the AEP are 

performed in two stages. During the first stage, the water is introduced into the permeameter 

through a stand pipe over which a graduated cylinder and mercury manometer are attached. 

Water is allowed into the soil within the permeameter ring, and the flow rate is measured by 

observing the decline of the water level within the reservoir. The second stage of the test 

starts after the flow rate during infiltration becomes constant. At this point, the flow of water 

into the permeameter is stopped, and the wetted zone is allowed to dram. This causes a 

pressure drop within the permeameter as water in the wetted zone reacts to the suction 

pressures m the underlying unsaturated soil. As the water drains, tension m the water within 

the ring increases until the point where air-entry pressure (Pa) or bubbling pressure is reached 

and bubbles irugrate upward through the soil into the ring. The minimum pressure value 

(pmm) attained duruig this stage is used to calculate Pa using Equation 12. The hydraulic 

gradient may be calculated using Equation 13. Once the minimum pressure is achieved, the 

permeameter is removed and the depth to the wetting front, Lf, is measured. Then, by 

substituting the hydraulic gradient value m Equation 11, the hydraulic conductivity may be 

determined. 

a = (H + Lf — O.S P~/Lf  (13) 

Where 

PQ =air-entry pressure or bubbling pressure (cm), 

P,,,,n = minimum pressure attained m the water above ground (cm), 

G =height of the vacuum gauge above the surface of the liner (cm). 
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The AEP is most suitable for sand, silt, and clayey soils having hydraulic 

conductivity m the range of 10-9 cm/sec to 10~ cm/sec (Stephens and Associates, 2004}. 

Graduated _.~ 
Cylinder 

Reservoir Supply --~ 
Valve 

Mercury Manometer 

Plexiglass Lid 

 I 
F— Ring 

Figure 27 Alr entry permeameter (Fernuik and Haug, 1990) 

T 
G 

H 

Lr 

The double nng mfiltrometer (DRI) test is also used m determining the infiltration 

rate of water into soils. The DRI test may be performed in accordance with ASTM D3385, 

"Infiltration Rate of Soils in Field Using Double-Ring Infiltrometers." Infiltration rates have 

the same units as hydraulic conductivity (cm/sec}, but it should be noted that they are 

distinctly different. This instrument has outer and inner nng dimensions of 12 ~n. and 24 zn. 

diameter, respectively and is 20 m. high. The test method involves dnvmg the outer and 

inner rings into the ground, partially filling the rings with water and then maintaining It at a 

constant level. The volume of water added to the inner ring to maintain the constant level, is 

noted to determine the infiltration rate. This test is suitable only for soils with hydraulic 

conductivity m the range of 10~` to 10-6 cm/sec (ASTM D3385). 
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Pavement Base Construction Practices 

The benefits of using an open-graded permeable base layer are widely accepted 

throughout the world. But working with open-graded material in the field and obtaining a 

workable platform for the overlying surface are not yet well defined. Many researchers (Reed 

1995, Kazmierowski et al. 1994) summanzed their experiences m construction of an OGDL 

during their study and suggested a method of construction meeting the today's construction 

standards. 

Kazmierowsk~ et al. (1994) provided the following recommendations for open-graded 

base construction, which is m implementation by the Ontario Ministry of Transportation. 

• Construction traffic should not be permitted on the Open-Graded Drainage Layer 

(OGDL) for the paving train during placement of the overlying pavement. Haul 

trucks should not be allowed on the OGDL except to discharge material directly on to 
the paver. 

• The OGDL should be covered with the concrete pavement within 30 days of 

placement to prevent contaminations resulting from prolonged exposure. The OGDL 

should be protected from dust during construction 

• Compaction of Asphalt Treated Permeable Bases (APTB) should consist of three to 

five passes of a class S2 roller weighing 9 to 11 tons. Final compaction should be 
such that the OGDL can support the weight of the paving equipment. Pneumatic tires 
or vibratory rollers should not be used. 

Reed (1995) summarizes the Illinois DOT's experiences in stabilized OGDL construction 
during the mid 1980's through 1993 The Illinois DOT concluded that the open-graded 
drainage material, which met Illinois DOT CA-7 gradation and was stabilized with Portland 
cement of 142 kg/m3 and w/c ratio of 0.5, produced a fairly uniform mix with good 

workability and results m a stable OGDL. This mix was compacted using vibratory pans 
attached to the subgrade planer. They also concluded that no curing is required for this mix, 
as there was no significant difference m strength between cured and non-cured sections. 
Further they recommended using a subgrade planer (e.g. motor grader) or similar equipment 

that has the ability to spread the harsh mix for laying a Portland cement stabilized OGDL. 



www.manaraa.com

66 

Key Findings from Literature Review 

The maJor finds determined from this literature review are surrim.arized as follows: 

• Undrained PCC pavement sections with granular or lean concrete bases may develop 

roughness, transverse cracking, and longitudinal cracking more rapidly than drained 

pavement sections with permeable asphalt-treated base (Hall and Correa, 2003). 

• Incorporating permeable bases reduces ~ Dint faulting and D-cracking in the case of 

non-doweled pointed PCC pavements (Harrigan, 2002}. 

• An increase in fines content above the critical fines content, CF greatly increases the 

rate of permanent strain for some Iowa aggregates (Ferguson, 1972). 

• The strength of the aggregate material decreases significantly with Increased fines 

content over the optimum fines content (Aggregate Handbook, 1996). 

• Cement-treated open-graded materials result in smaller deflections as compared to 

material treated with asphalt and untreated material (Kazmierowski et al. 1994, 

Highlands and Hoffman, 1988}. 

• Increasing the fines content above 5 %increases the suction and frost heave action. 

Adding bitumen helps prevent frost heave at any fines content (Koliso~a et al. 2002). 

• Higher stiffness, higher friction angle, higher cohesion due to interparticle water 

tension, and less axial strain is observed ill crushed limestone, compared to uncrushed 

or crushed gravel (Cheung and Dawson, 2002). 

• The life of a poorly drained pavement is reduced by 1 /3 or Less of the life than a well-

drained pavement (Cedergren, 1974). 

• Recycled concrete materials result in lower hydraulic conductivity compared to 

crushed limestone, both in lab and field (Miyagawa, 1991). 

• Aggregate material with 100% crushed faces exhibit greater hydraulic conductivity 

compared to 88% crushed faces with similar gradation (Hasping et al. 1993}. 

• The minimum required hydraulic conductivity of a pavement base layer and/or the 

time to achieve a given percent drainage is dependent on various factors, including 
properties of aggregates, dimensions of the pavement, rainfall intensity and the 

amount of drainage required. 
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• Requirements on the minimum stability required for an aggregate base are not well 

established. Structural contributions being assigned in design continues to be a point 

of debate. 

• State DOT gradation surveys indicate that six states use only permeable bases, eleven 

states use only dense-graded bases, and twenty-nine states use both dense-graded and 

permeable bases. 

• Surprisingly CBR, which is an indirect measure of undrained shear strength, has 

been used in characterizing the base/subbase and subgrade materials by most 

pavement engineers, but is not of direct interest in the pavement design. The 

l~ilowledge of resilient properties of a material and their tendency to develop plastic 

strains under repetitive loading may be the key parameter for design (Brown, 1997). 
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LAB(3RATORY INVESTIGATION 

This section summarizes Laboratory hydraulic conductivity and strength 

measurements on several Iowa aggregates (limestone, gravel and recycled concrete) used for 

pavement base construction. Table 21 lists the aggregate materials and the sample locations. 

To study the influence of fines content on hydraulic conductivity and strength, 

constant/falling head permeability and CBR tests were performed. The results show that 

hydraulic conductivity exponentially decreases as fines content increases and that maximum. 

strength is achieved for fines contents between 6% and 14%. The measured hydraulic 

conductivity and CBR values were also found to vary significantly as a function of aggregate 

type, gradation, and density Particle degradation of recycled concrete aggregates is higher 

than crushed limestone and gravel, which leads to lower hydraulic conductivity values. 

Target hydraulic conductivity values for granular subbase aggregates were established. based 

on criteria of achieving 50% or 90% drainage in less than 2 hours for a typical two lane 

pavement. The results for various aggregates were then compared to the established drainage 

criteria. 

Test Methods 

Grain-size analyses were conducted in accordance with ASTM C 136, "Standard Test 

Method for Sieve Analysis of Fine and Coarse Aggregates." Particle-size distribution curves 

were determined using an air-fined sample of about 2000 g and sieving over the 1.5, 1, 0.75, 

0.5, 0.375 in, Nos. 4, 8, 10, 30, 50, and No. 200 sieve sizes. 

Atterberg limits were determined in accordance with ASTM D4318-93, "Liquid 

Limit, Plastic Limit, and Plasticity Index of Soils." Liquid limit tests were performed 

according to Method A (multi-point liquid limit) by estimating the water content until the 

sample required 25 blows to close the groove. Three representative air-dried samples of 

about 200 g each passing No. 40 sieve were used to determine the liquid and plastic limits. 

Specie c gravity was determined using ahelium-pycnometer. Tests were conducted 

using aDensity-Multipycnometer manufactured by Quantachrome Instruments and in 

accordance with the .standard test procedures provided by the manufacturer. Sample mass 

used for testing varied between 3 5 to 5O g passing the No. 1 ~ (2 17~11~) sieve. 
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Micro-Devai tests were conducted on three different aggregate materials (crushed 

limestone, gravel and recycled concrete) to determine the abrasion loss. Tests were 

performed in accordance with the standard test procedures recommended by the Ontario 

Ministry of Transportation (MTO 1997). This test entails abrading a graded sample in a 

small rotating drum with steel charges in the presence of water. This process can simulate 

degradation of aggregate under repetitive traffic loading during saturated base conditions. 

CBR tests were conducted to investigate the influence of fines content (passing No. 

200 sieve) on strength. Tests were performed in accordance with ASTM D 1883, "Standard 

Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted soils." Variations 

in fines content ranged from 0 to 14%0. Aggregate gradations with particles retained on the 

0.75 in. sieve were modified by adding an equal amount of material passing through the 0.75 

in sieve and retained on the No. 4 sieve, according to ASTM D 1883 Standard Proctor 

compaction energy was used to produce the CBR test specimens. As shown in Figure 28, 

tests were performed by placing the sample in a container filled with water. This approach 

represents loading under saturated base conditions. A surcharge weight of 2.2 kg (5 lb) was 

applied to the top of the sample to prevent bulging during loading. 

Penetration 
Plunger 

Surcharge 
Weight, 5lbs 

SANS.. E 

2" Spacer 

Testing F~ciestal 

Figure 28. Schematic representation of soaked CBR test setup 

Relative density compaction tests were conducted on oven-dried samples in 

accordance with Test Method A of ASTM D4254, "Standard Test Method far Minimum 

Index Density and Lnit Weight of Soils and Calculation of Relative Density" and Test 
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Method 1 A of ASTM D42 S 3, "Standard Test Method for Maximurri Index Density and Unit 

Weight of Soils using a Vibratory Table" to determine minimum and maximum dry densities 

of the aggregates, respectively To accommodate materials having a maximum particle size 

up to 1.5 in, a 0.0142 cu m. (0.5 cu ft.) volume compaction mold was used. 

Constantlfalling head permeability tests were conducted using alarge-scale aggregate 

compaction-mold permearneter (ACP) fabricated for this study Tests were conducted in 

accordance with the standard test procedures developed during this study and provided in 

Appendix B. Test specimens were compacted by striking the sides of the mold with a rubber 

hammer andlor using a Marshall compaction hammer. 

Aggregate Index Properties 

Aggregate materials were obtained in bulk from the quarry or from base construction projects 

in the field. Information on the aggregate type, source and sampling location is summarized 

m Table 21. 

Grain-size distribution curves for all samples are shown m Figures 29 and 30. The 

Iowa DOT gradation specification according to No. 12 section 4121 (granular subbase} is 

provided for comparison. A summary of the gradation test results is provided in Table 22 for 

the quarry samples and Tables 23 and 24 for the field samples. The coefficient of umformrty 

C,,, coefficient of curvature, C~, and percent fractions of gravel, sand, and silticlay are listed 

m Tables 25 and 26. All materials were classified according to AASHTO and the Unified 

Soils Classification System (USCS). 

It can be seen that, with the exception of CLS151 and RPCC35, none of the quarry or 

field samples specified as granular subbase meet all of the Iowa DOT gradation requirements 

(see Tables 22 and 23). Aggregates used for special backfill (RAUG), modified subbase 

(MSB) and porous backfill (CLSD) did meet the Iowa gradation requirements (see Table 24). 

The AALS and sand samples are considered well-graded materials and were included in this 

study for purposes of comparison with engineering properties of open-graded materials. 
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Table 21. Aggregate samples obtained from quarry and field 

Material 
Iowa Aggregate 

Gradation 
Text 

Designation Source ~ 
Sampling 
:Location 

Crushed 
Limestone 

Granular 
Subbase 4121 ~ ) 

CLS ne d r Ra .ids Iowa Martin Ma tta, Ce a p , ua Q ny 

Crushed 
Limestone 

Granular 
Subbase 4121. (_ ) 

ALS 1Viartin Marietta Ames Iowa ua Q ~ 

Rec cle P y d CC Granular 
Subbase 4121 ( ) 

RPCC Mannats Materials Ames Iowa ua Q ~ 
Crushed 
Limestone ACC 0.5" ( ) ~ AALS Marten Marietta Ames Iowa ua Q ~ 
Uncrushed 
Gravel 

Granular 
Subbase 4121 ~ ) 

AG Hallet Materials, Iowa Quarry 

Sand Granular 
Backf 11 4133} 

\ 

_ Sand Hallet Materials, Iowa Quarry 

Crushed 
Limestone 

_ 4

Granular 
Subbase (4121.) CLS218 IA2 I S Pavement base construction 

site, South-East Iowa Field 
. _ 

Crushed 
Limestone 

_ 
Granular 

Sub_ base (4121) CLS 151 US 151 Pavement base construction 
site, Cedar Rapids, Lowa Field 

Recycled PCC Granular 
Subbase 4121 ( ) 

RI'CCArnes 

_ 
Knapp Street Pavement base 
construction site, Ames, Iowa Field 

Crushed 
Limestone 

Granular 
Subbase (4121) CLSUG University-Guthrie Pavement base 

construction site, Des Moines, Iowa Field 

Rec sled PCC y 

_ _ 
Granular 

Subbase (4121 } 

, 

RPCC35 I-35 North Bound Pavement Base 
Construction, Story Co., Iowa Field 

Crushed 
Limestone 

Modified 
Subbase (4123) MSB 35th Street Pavement subbase 

construction site, Des Moines, Iowa Field 

Crushed 
Limestone 

Porous 
Backfill 4131) ( 

CLSD University-Guthrie drainage trench 
construction site, Des Moines, Iowa Field

Rec sled y 
Asphalt 

Special 
Backf 11 

(4132.02) 
RAUG 

University-Guthrie Pavement sub-
base construction site, Des Moines, 
Iowa 

Field 
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Figure 29 Gram-size distribution curves of quarry samples comparing with Iowa DOT 
gradation according to section No. 4121 

Table 22. Grain-size distribution of quarry samples 

Sieve °l° Passin 
Sieve 
No. 

_ 
Size 

(mm) AG RPCC CLS ALS 
,~ 

lows 
DOT' Sand Iowa 

DOTZ AALS
. 

Iowa 
DOTS 

l.5" 37.5 100.0 100.0 100.0 100.0 100 100.0 - 100.0 -
1" 25 99.0 86.9 98.7 96.5 - 100.0 - 100.0 -

0.75" 19 84.0 64.9 77.0 65.2 - ] 00.0 - 100.0 l 00.0 
0.5" 12.5 50.8 35.7 34.9 27.5 - 99.8 - 97.6 92-100 

0.375" 9.5 11.0 20.8 15.9 9.8 - ~ 99.6 - 89.3 70-91 
No.4 4.75 0.5 13.7 4.8 2.4 - 98.0 - 61.2 50-72 
No.8 2.36 

_ 
11,4 11.6 d.l 

_ _ 
.2.~' 10-20 91.5 20-100 39.8 36-57 

No. 30 0.6 0.3 9.8 3.9 2.2 - 12.3 - 23.0 16-34 
No. 50 0.3 0.3 8.8 3.8 2.2 0-15 4.0 - 17.2 -
No. 100 0.15 0.3 8.1 3.7 2.1 - 2.0 - 13.9 -
No. 200 0.075 0.3 ' ~ 3.6 1.9 0-6 1.6 0-10 h'.l 3-7 
' Iowa DOT specified gradation according to section No. 4121 -granular subbase 

Iowa DOT specified gradation according to section No. 4121 -granular backfill 3 Iowa DOT specified gradation according to section No. 4121 -ACC (0.5 in.) 
Nof required 

Does not meet Iowa DOT specification 
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Figure 30. Grain-size distribution curves of field samples compared to Iowa DOT 
gradation according to section No. 4121 

Table 23. Gram-size distribution of field samples 

Sieve % Passing 

Sieve 
No. 

Size 
(mm) CLS218 CLS151 RPCCAmes CLSUG RPCG35 Iowa 

DOT* 
1.5" 37.5 100 ] 00 100 100 100 100 
1 25 89.2 84.4 93.7 9b.3 86.1 - F~ 

0.75" 19 70.2 68.3 83.7 74.5 70.2 -
0.5" 12.5 46.8 50.4 70 48.4 53.6 -

0.375" 9.5 36.1 39.1 61.5 37.2 43.2 -
No.4 4.75 25.1 24 46.9 33.5 26.7 -
No. 8 2.36 15.9 16.6 3? b 17. S 17 7 10-20 
No. 10 2 13.1 15.4 35.9 26.1 16.5 -
No.30 0.6 10.6 10.4 22.7 16.8 9 -
~Io.50 0.3 9.8 9.2 15.3 13.4 5.9 0-15 

No. 100 0.15 9 7.8 9.2 11 3.6 -
No. 200 0.075 

w 

~.~ 6.1 4.9 
~ w 

9..3' 2.4 0-6 
Iowa DOT specified gradation according to section No. 4121 -granular subbase 

~~ Not required 
Does not meet DOT specification 
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Table 24. Grain-size distribution of field samples 

Sieve % Passing 
Sieve 
No. 

Size 
(mm) RAUG Iowa 

DOTI CLSD Iowa 
DOT1 MSB Iowa 

DOTS
1.5" 37.5 100.0 100 100.0 100.0 100.0 
1 25 94.0 100.0 $9.9 

0.75" 19 - 86.1 100.0 100 . 71.0 70-90 
0.5" 12.5 76.3 100.0 95-100 57.0 

0.375" 9.5 68.4 84.3 50-100 45.2 
No. 4 4.75 52.2 . 17.7 10-50 30.0 
No. 8 2.36 37.8 15-45 6.2 0-8 22.6 10-40 
No. 10 2 34.3 6.1 21.4 
No. 30 0.6 8.8 5.7 14.4 
No. 50 0.3 2.6 5.3 .12.4 
No. 100 0.15 l . l 4.8 1. 1.0 
No. 200 

J 
0.075 0.7 0-10 4.4 10.0 3-10 

Iowa DDT specified gradation according to section No. 4132.02 special backfill 
2 Iowa DOT specified gradation according to section No. 41.31 porous backfill 
3 Iowa DOT specified gradation according to section N o. 4123 modified subbase 

A summary of Atterberg limits are provided in Tables 25 and 26 for the quarry and 

field samples, respectively (~f all the materials, only CLS218, RPCCAmes and MSB exhibit 

plasticity with P~ values ranging between 3 and 8. The granular subbase materials are 

classified as A-1-a according to AASHTO and from GP to GW according to USCS. The 

well-graded crushed limestone (AALS) is classified as A-1-a and SM and the Sand as A-1-b 
and SP-SM. Specific gravity values ranged from 2.4 for recycled asphalt to 2.8 for gravel. Cu
and C~; values vaned widely as a function of gradation. The minimum and maximum dry 

densities determined from the vibratory compaction method yield relatively low values (i.e. 

14~?0 to 16~U kg/m3) for the granular subbase materials and higher values (e.g. 2000 kg/m3) 
for the more well-graded materials. 
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Test Results and Discussion 

Influence of Fines Content on CBR 

The influence of fines content on strength was investigated by performing laboratory 

CBR tests on aggregate gradations with fines content vaned from o%--14%. For this study, 

test materials included CLS, ALS, RPCC, AALS, .~~, and RPCCAmes. Table 27 shows the 

maximum CBR (%) achieved at 0.4 in. penetration and the corresponding optimum fines 

content. optimum fines content was determined as the fines content that produced the 

maximum CBR value. Typically 0.1 or 0.2 inch penetration values are used to determine 

CBR for aggregates. However, for our tests, the best correlation between CBR and fines 

content was observed at 0.4 in. penetration. Lower penetration depths produced erratic 

values. A summary CBR measurements at all penetration depths is provided in Appendix C. 

For 0.4 inch penetration, the optimum fines content necessary to achieve maximum 

CR is between 6% and 14%. Results show that the RPCC materials exhibit the lowest CBR 

at 22 to 31 with optimum fines content of 8% and 14%. CLS exhibits the highest CBR at 

about 52 with an optimum fines content of about 8%. All limestone aggregates (CLS, ALS, 

and 1~►.ALS) exhibit higher CBR values than the recycled concrete aggregates (RPCC, 

RPCCAmes), which is believed to be a result of significant particle breakage/degradation 

observed during testing of the RPCC materials. To verify this observation, Micro-Deval 

degradation tests were performed on the recycled concrete (RPCC) with comparisons to 

limestone (CLS} and gravel (AG). A summary of the test results is provided in Table 2 S. As 

expected, RPCC exhibits poor performance with higher abrasion loss when compared to CLS 

and AG. 

CBR test results for AG did not exhibit predictable behavior with varying fines 

content at any penetration level. The behavior may be attributed to a lack of Interlock 

between the gravel particles. It was further observed that (1) fines segregated during the 

saturation process prior to testing; and (2) during loading it was difficult to maintain a 

constant increase in load because the load piston was carried by dust a few individual gravel 

particles, thus concentrating the load. As particles fractured during loading, the rate of 

loading would abruptly decrease. Hence, the CBR values obtained for AC are highly 
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variable. 

Table 27 CBR at Optimum fines content 

Material 
Optimum % 

fines 
CBR(%} at 0.4 
~n penetration 

CLS 8 52 
ALS 10 45 

RPCC 8 22 
AALS 6 S 1 

AG ~ 8 ~ 43 
RPCCA~nes 14 31 

Notes: 
iF~nes passing No. 200 sieve, 

Highly vanable results 

Table 28. Abrasion loss and performance rating of materials tested 

Material % Abrasion loss 
Performance 

Rating 
AG 9.8 Good 

CLS 15.3 Fair 
RPCC 22.5 Poor 

Note: Rating according to Cooley et al. (2002) 

In, fl'uence of Fines Content on .Hydt"aulic Conductivity 

To investigate the influence of fines content on hydraulic conductivity falling head 

permeability tests were conducted on RPCC with fines contents ranging from 0% to 15% in 

increments of 3%. A summary of the results is shown in Table 29 Results show that 

hydraulic conductivity decreases from about 1.6 curls to 0.6 curls with an Increase in fines 

from 0% to 3 %, then decreases exponentially with further Increases in fines to 0.07 curls at 

15%fines content. The drainage times for achieving 50% and 90% drainage of this material 

were estimated using PDE 1.0. In order to calculate the drainage tunes using PDE 1.0, 

assumptions of a two-lane highway with 150mrn thick base material having effective 

porosity of 30%,across-slope of 2% and 0% longitudinal gradient were used. At the 

specified upper limit of 6% fines content, 50% and 90% drainage time vanes from less than 1 

hour to 3.5 hours. At a fines content of 15%, the hydraulic conductivity is reduced over 20 

times and the drainage times increase about 21 times. 



www.manaraa.com

79 

Table 29 Falling head permeability test results for RPCC with variation in fines 

% 
fines 

Dry density 
(kg/m~} 

I~ 
(cm/sec} I~;~,~* 

Time for 50% 
drainage 

(h)** 

'rime for 
90% 

drainage 
(h}** 

0 155E 1.55 < 1.0 1.4 
3 1604 0.56 2.8 < 1.0 3.8 
6 1619 0.53 2.9 < 1.0 4.0 
9 1b75 0.37 4.2 1.1 5.7 
12 1722 0.13 11.9 3.2 16.1 
15 1778 0.07 22.1 5.9 29.9 

dotes 
KX indicates K at designated fines content 

K.q indicates K at 0% fines 
** Estimated using PhE 1.04 

Figure 31 shows the var~at~on in hydraulic conductivity and drainage time for 50% 

and 90% drainage on the y-axis with increase in fines content on the x-axis. A.n exponential 

decay relationship exists between K and fines content with an R2 value of 0.95 Conversely 

exponential growth is observed for drainage time versus fines content. To achueve the 

drainage time recommended by AASHT~ (< 2 hrs) at the 50% and 90% drainage levels, the 

hydraulic eonduct~v~ty should be greater than 0.22 cmisec and 0.97 cm/sec, respectively 

50% drainage can be achieved with less than 10% fines content, while 90% can only be 

achieved with fines content less than about 2%. For RPCC having a maximum CBR of 22 

with S% fines content, 50% and 90% drainage would take about 1 hour and 5 hrs, 

respectively At 2% fines content, the CBR is reduced to 1$. 
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Figure 31. Influence of fines content on hydraulic conductivity of RPCC 

Influence of Gradation on Strength 

To investigate the influence of gradation on strength, CBR tests were performed on 

aggregate samples that were re-graded to form both open-graded and dense-graded mixtures 

of the sample material. Comparative tests were performed for RPCC, CLS, and AG 

aggregates. Particles passing the 0.75 in. sieve and retained on 0.5 in. sieve constituted the 

open gradation whereas the dense gradation was determined from the 0.45 power gradation 

curve fora 0.75 in. maximum particle size. Figure 32 shows the open and dense gradation 

curves. Test results are summarized in Table 30. 

In summary results show that CBR values increase 1 1 to 2.8 times from open-graded 

to dense-graded mixtures. This is an indication of the sensitivity of strength on gradation. 

RPCC again exhibited significantly lower CBR values compared to CLS for both open and 

dense gradations, but less reduction going from dense to open gradation. ACT showed fairly 

uniform results for both gradations and at all penetration depths. 
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Table 3©.CBR% values for samples at dense and open gradation samples 

M atereal 

RP`L C 

CLS 

CSR (%) 
Penetration Dense 

(inch) Gradation 
0.5 18 
0.4 17 
0.3 l 7 
0.2 - l 6 
O.l 11 
0.5 38 

Open 
Gradation 

13 

10 

10 

8 
7 
35 

CBRD/CBIto
1.4 

i.7 

1.7 

2.0 

2.8 

1.1 

0.4 b3 32 

0.3 51 27 

0.2 44 27 

0.1 31 18 

0.5 39 36 

0.4 41 38 

0.3 43 39 

0.2 49 38 

0. l 49 38 
Note: 
CBR -CBR at dense gradation, CBR -CBR at open gradatpan 
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Influence of Compaction Energy on Hydraulic Conductivcty 

To investigate the influence of increased compaction energy of (i.e. increased number 
of roller passes in the field) on density and hydraulic conductivity falling head tests were 

conducted on field samples that were compacted to the minimum and m~unum dry densities 

measured m situ. Results are summarized in Table 31 Figure 33 compares the hydraulic 

conductivities at minimum and maximum dry densities for all samples. The drainage times 
required to achieve 50% and 90% drainage were again estimated using PDE 1.0 for a two-
lane highway 

Results show that the hydraulic conductivity can be significantly affected by 

compaction energy (e.g. density), but depends on the material type. RAUG special backfill 
exhibited the lowest hydraulic conductivity of about OA2 to 0.09 cm/sec (60 to 250 ftJday) at 
its high and low densities, respectively This material is dense-graded (see Table 24). 

CLS218, CLS151, and RPCC35 granular subbase materials e~ibited higher hydraulic 
conductivities than CLSUG. RPCC35 exhibited the largest decrease m hydraulic 

conductivity from 3.2 cm/s to 0.2 cm/s (16 times less) with increased compaction effort. This 
was not unexpected given the potential for RPCC particle degradation discussed previously 

CLS218 and CLS 151 meet the recommended drainage time for 50% and 90% 
drauiage even at the higher densities, whereas RPCC35 meets this criterion only at its lower 
density CLSUG and RAUG do not meet the threshold limit at both the high and low 
densities. Thus, it can be determined that the crushed limestone granular subbase materials 
still meet the drainage requirements at the higher compaction effort. A benefit of increased 
density should be unproved strength/stability A relationship between compaction density 
resilient modulus and permanent strain should be investigated m the future for Iowa 
aggregates. 
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Table 31. Hydraulic conductivity test results with variation in density 

Nlater~al 
Dry density, 

~a (kg/m~ 

Change 
~n 7d 

(kg/m~ 
K 

(cm/sec) 
KbW/ 
Kh;Qh

Time for 50% 
drainage 
(hours) 

Time for 90% 
drainage 
(hours) 

CLS218 
1676.8 - 2.83 - < 1.0 < 1.0 
1857 4 180.6 1.39 2.0 < 1.0 1.5 

CLS 151 
1683.4 - 3.22 - < 1.0 < 1.0 
1863.4 180.0 1.22 2.6 < 1.0 1.7 

1tPCC35 1334.7 - 3.24 - < 1.0 < 1.0 
1689.0 354.3 0.20 16.2 2.0 10.3 

CLSUG 
1574.7 - 0.21 - 2.0 10.0 
1891.5 316.8 0.06 3.5 6.9 34.9 

RAUG 159 .2 - 0.09 - 4.7 23.8 
1691.5 96.3 0.02 4.5 19.b 99.6 

3.5 

~ 3.0 
d 

~ 2.5 .~ 
Y 

'~ 2.0 
v 

0 1.5 
V 

~ 1.0 
'~ 
A 

~ High Density 
j ~ Low Density ~ 

Time aF 90% drainage < 2 h 
Mirnmum K = 1.0 cm/sec 

0.5 ~ 

`'  
I 

0.0 ~ 

Time of 50% drainage < 2 h 
Minamum K = 0.21 cmJsec 

RAUG CLSUG RPCC35 
Sample 

CLS151 CLS218 

Figure 33. Laboratory hydraulic conductivity test results for field samples at high and 
low densities 

Influence of Compaction Type on Dry Densih~• Vibration versus Impact 

Maximum dry densities obtained from standard Proctor (impact) compaction energy 

were compared to the dry densities obtained from vibratory compaction tests. The results are 
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summarized in Table 32. All materials except sand show higher dry densities (about 260 

kg/m3 or 10% to 15%) with impact compaction corripared to vibratory compaction. 

Table 32. Comparison of densities from static and vibratory compaction 

Mater~ai 

Dry Density (kg/m3) 
vibratory 

compaction 
Impact 

compactionz
Change ~n 

density 
SAND 1611 1608 3 
RPCC 1411 1672 261 
ALS 1467 1723 256 
CLS 145 l 1712 261 
AG 1641.6 1758.7 6.7 

AALS 2016.2 2369.6 14.g 
Ni otes 
1Dry density from vibratory compaction test 
`'Dry density determined during hydraulic c©nductivity testing 

Key Observations from Lab Tests 

• Done of the aggregates obtained from the quarry and only a two from the field meet 

the specified Iowa DOT gradation requirements for granular subbase. 

• Maximum CBR is achieved at fines contents between 6% and 14% for granular 

subbase materials. All crushed limestone materials (CL5, ALS, and AALS) exhibit 

higher CBR values than recycled concrete materials (RPCC, RPCCAmes). 

• The degradatlon/abrasion Ions is higher for recycled concrete than crushed limestone 

and gravel. 

• ~iydraulic conductivity decreases exponentially with increasing fines content. 

• The fines content of RPCC must be 2% or less to meet the drainage requirement of 

9{~% in < 2h or less than 10% to achieve ~~% drainage in < 2h. 

• CBR decreases from dense to open gradations. 

• PIydraulic conductivity can significantly decrease with increasing compaction energy 

(i.e. density), but depends on the aggregate type. RPCC exhibited a 16 times decrease 

in hydraulic conductivity with Increased compaction energy The crushed limestone 

granular subbase materials achieved adequate hydraulic conductivity even at high 

compaction energies. 
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PAVEMENT BASE CONSTRIJCTIUN OPERATIONS 

C~peratlons from new construction of aggregate bases under PCC pavements in Iowa 

are documented 1n this section. Construction operations varied s~gnlficantly between each 

project and contractor. The spreading and trimming processes was found to significantly 

influence segregation and localised increases in fines in the base layer. Moisture content 

present during ti-~.mming also Influenced segregation as finer particles can be easily separated 

from larger particles at lower moisture contents. 

IBS 21$ Base Construction Process 

This srte is located on US 218 South Bound about 15 miles south to Mount Pleasant, 

Iowa. A crushed limestone granular subbase (CLS218) of about 6 in. thick at the edges and 

10 in. thick at the center (cross-slope of about 2%) was constructed at this location and 

overlaid with a PCC pavement. Vanous stages of the construction process are described in 

the following section. 

Pacing the Aggregate 

Aggregate haul trucks used the shoulder as shown in Figure 34, to transport the 

aggregate to the prepared subgrade. Trucks then dumped and drove back out on the subgrade. 

I~zo construction traffic except the trirriiner was allowed to move on the base layer. Figure 3 5 

shows dumping of the aggregate. The shoulder areas became unstable and rutted during the 

hauling operations. 
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Figure 34. Unstable shoulder under loaded trucks placing aggregate 

Figure 35. Dumping of aggregate on subgrade 
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:Spreading the ~4ggr~egate 

The aggregate piles were spread to the full width of the prepared subgrade using a 

~6XL dozer as shown ~n Figure 36. The process involved spreading the aggregate 

longitudinally up and down the subgrade. The dozer blade left about 1 to 1.5 inches of extra 

material over the full width of the pavement. ln~t~al compaction was performed on the 

leveled base layer using a X63 CAT steel drum roller of 5 ton capacity for one roller pass 

with no vibration (Figure 37). 

~'r~tntmtrtg Pf~©cess 

After initial compaction, final tnmm~ng was performed to remove excess base 

material and meet the required thickness for paving. The tnmm~ng process was perfof~~~ed 

using a 930Q Caomaco trimmer shown ~n Figure 3 S. The trimmer used a level indicator as 

shown ~n Figure 39, to control the depth. excess material trammed during the process was 

placed ~n a pile longitudinally on the base as shown ~n Figure 3~ The excess aggregate was 

later removed and placed back into the haul trucks as shown ~n plgure 4d, for use on other 

Harts of the base construet~on. 

Figure 36. Spreading of aggregate piles using D6XL dozer 
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Figure 37 Initial Compaction using 563 CAT Roller 

Figure 38. Final trimming using 9500 Gomaco 

Final Com~actaon 

After the base layer was trammed to the desired thickness and elevation, final 

compaction was performed using a 0563 CAT steel drum roller of 5 ton capacity as shown ~n 

Figure 41. Compaction was again performed with no vibration for 2 roller passes over the 
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full width of the pavement (note that one pass forward and one bass backward account for 

one full roller pass of compaction). 

Figure 39 Final trimming of base, level indicator attached to trimmer, and aggregate 
pile formed after trimming 

Figure 40. Placing trimmed aggregate back in to the haul trucks for re-use at other 
location 



www.manaraa.com

90 

Figure 4 Q Final cnmpaetian using 463 C'A~T ralle~-

Key _Notes fi~oJn the Construct~of~ Pjrocess 

Figure 42 shows a picture of sampled aggregate used during the base construction. 

The bucket on the left contains matenal collected from the truck which carved aggregate 

directly from the quarry whereas the bucket on the right contains aggregate collected from 

the trimmed matenal. As mentioned before, the aggregate collected from the tnmrner was 

also used in other parts of the base construction. From the picture it can be seen that the 

aggregate collected from the trimmer contains more open-graded matenal and less fines than 

the quarry sample. 

Figure 43 shows the difference between the aggregate from the quarry (right) and 

trimmer (left). It can be seen that the aggregate from the quarry ~s wet; whereas the trimmed 

sample on the right is dry Effect~~e m~x2ng of these materials was not possible ~n the field. A 

consequence of dry granular subbase in the field ~s that fines will segregate more readily 

Test results on the final base layer tndicat~ng slgrnficant segregation and rncrease in fines. 

Further discussions on segregation are provided to later sections of this report. 
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Figure 42. Quarry aggregate sample on left side and aggregate from trimmer on right 
side 

Figure 43. Dry sample on left from trimmer and wet sample on right from quarry 

US~._51 Base Construction 

This site is located on US 151 East bound near Springville and Cedar Rapids, Iowa. A 

crushed limestone granular subbase (CLS 151 }about 8 an. thick on the edges and 10 in. thick 

near the center (cross-slope of about 1 %} was constructed at this location and then overlaid 

w~tli PCC pavement. ~%arious stages involved during the construction process are described 



www.manaraa.com

92 

m this section. 

~'lac~ng the Aggregate 

Aggregate haul trucks were using the shoulder, as shown in Figure 44, to transport the 

aggregate base material to the prepared subgrade. Trucks backed onto the subgrade to place 

the aggregates. After dumping, the empty trucks returned to the shoulder. No construction 

traffic, except the dozer, trimmer, and roller, was allowed to operate on the base layer. 

Figure 44. Haul way used by the trucks to transport the aggregate 

Spreading the Aggregate 

The aggregate piles were spread to full width of the prepared subgrade using a D6XL 

dozer as shown ~n Figure 45 The process was carved out by spreading the aggregate 

longitudinally along the pavement. The dozer blade was then set to a level of about l to 2 

inches greater than the desired thickness of the final base layer, and ~s approximately leveled 

over the full width of the pavement. 
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Figure 45. Spreading of aggregates using a D6XL dozer 

Trimming Process 

After spreading the aggregate, tnmming was performed to remove the excess base 

matenal and meet the required thickness and elevation. The tramming process was performed 

using a TR 500 tnmmer as shown in Figure 4b. The tnmmer has a precise level indicator as 

shown Zn Figure 46, to control the tnmmmg process. The tnmmed aggregate was deposited 

on the side of the tnmmer as shown In Figure 47 

l ~c3vel ind'teat«r 

Figure 46. Final trimming process using TR 500 trimmer 
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Figure 47 Piling of trimmed aggregate on the side of trimmer 

Final Compaction 

After the base layer was trammed to the desired tlucicness and elevation; final 

compaction was achieved using a C563 CAT steel drum roller of 5 ton capacity as shown in 

Figure 48. Uniform compaction was performed with no vibration for 2 roller passes over full 

width of the pavement. No sign2ficant vanation or segregation in fines was observed at this 

location. 

Figure 48. Roller used for final compaction 
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University-Guthrie Avenue Base Construction Process 

This site is Located at the exit of Unwersity Avenue from I235 West bound m Des 

Moines, Iowa. A crushed limestone granular subbase (CLSUG) of about 6 in. thickness was 

constructed at th2s location and overlaid with PCC pavement. 

Placing the Aggregate 

At this site, the aggregate haul trucks used the pavement base as a haul way to place 

the aggregate on the prepared subgrade. Figures 49 and 50 show the truck traffic and 

placement of the aggregate. All construction traffic was allowed onto the base without 

restriction. Figure 52 shows the haul way being used by a truck to return after dumping. 

Figure 53 shows another method that was used at this site for dumping the aggregate on the 

subgrade. A side dump truck used the existing concrete pavement to dump the aggregate on 

to the subgrade. 

Figure 49. Trucks moving on base for placing the aggregate 
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Figure 5d. Dumping of aggregates from the truck 

Figure 51. Trucks using haul way on their way back to the quarry 
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Figure 52. Another method of dumping the aggregate 

Spreading the Aggregate 

The aggregate piles were spread on the full width of the prepared subgrade using a 

CAT 140H grader as shown in Figure 53. The process was carved out by spreading the 

aggregate longitudinally and transversely along the pavement. The grader blade was initially 

set to a level of about 1 to 2 in. greater than the desired base thickness. After spreading the 

aggregate, the level m the grader blade was changed to meet the desired thickness. Thus, 

excess aggregate was trammed and placed as a pile on the edge of the pavement as shown in 

Figure 54. The trammed aggregate pile was cleaned by a bucket loader as shown in Figure 54. 

Final Compaction 

After the base Layer was trammed to the desired thickness and elevation and the 

trammed excess aggregate piles were removed, compaction was performed using a C 563 

CAT steel drum roller of 5 ton capacity as shown in Figure 55 Compaction was performed 

with no vibration for 2 roller passes over the full width of the pavement. 

Significant segregation and increase in fines was observed at this location, which Zs 

indicated in the test results described ~n later sections of this rep©rt. 
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F'i~;ure 53o Spreading and trimming of aggregate 

Figure ~4o Bucket loader remo~~~ng excess aggregate 
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Figure 55. Roller used for final compaction 

Key Observations from Construction Operations 

• The construction equipment and procedures vaned between projects. 

• Tnmmmg aggregate with the Gomaco type tnmmers leads to segregation, especially 

for dry base matenals. 

• There was no moisture control dunng placement or compaction of final base layer. 

• Low moisture content ~s believed to contribute to Increased segregation as there is 

poor adhesion between finer and larger particles. 

• Significant segregation and an increase in fines content was observed in two of the 

three projects visited. 

• Only one of the three projects visited did not restnct construction traffic. Although 

segregation was observed, it can not be solely linked to increased construction track, 

as other projects with no construction traffic showed similar segregation problems. 
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FIELD INVESTIGATION C)F PAVEMENT BASE5 

In-situ stability and permeability measurements on several sections of newly 

constructed pavement base are summarized ~n this section. Modulus of subgrade reaction (k) 

values were estimated from DCP test results correlated to in-situ CBS. and are compared to 

the current Iowa DDT pavement design value of 1 SO pci. GeotJauge values are also 

compared to the minimum modulus values proposed by Chen and Bilyeu (1999) for base 

materials. Drainage times for S 0% and 90% drainage were estimated from the in-situ 

hydraulic conductivity values determined from the APT measurements. Considering 

variations in density, water content, degree of saturation, and fines content, results show that 

fines content accounts for more variation in strength/stiffness than any other parameter. 

Further, the strongest correlation between any two measured parameters is between fines 

content and hydraulic conductivity Significant spatial variability of most parameters is also 

observed in each prod ect. Considering all prod ects with granular subbase, the calculated 

coefficient of variations are as follows: 9% for density 41 %for modulus, S 3 % for water 

content, 64°/® far Vines, 83%for CBR, and 97% for hydraulic conductivity Spatial variations 

of these parameters from in situ measurements have not been previously documented. 

Test 1Vlethods 

Dynamic Cone Penetrometer (DCP) tests were conducted in accordance with ASTM 

D6951, "Standard Test Method for Use of Dynamic Cone Penetrometer in Shallow Pavement 

Applications." Penetration Index (PI) (mm/bow) was measured was used to estimate CBR 

using Equation No. 4 of Table 19 

Clegg Impact Hammer tests were conducted ui accordance with ASTM D5874, 

"Standard Test Method for Determmarion of the Impact Value (I~ of a Soil." CBR was 

estimated from the measured Clegg impact value (CIS using the following equation: CBR = 

(0.24 CIV + 1)z (Clegg 1986). 

GeoGauge vibration tests were conducted m accordance with the standard test 

procedures provided by the manufacturer (Humboldt Co.). Material properties including 

Young's modulus (MPa) and stiffness (MN/m) were determined. A Poisson s ratio of 0.35 

was assumed m order to calculate Young's modulus from stiffness. 



www.manaraa.com

101 

Nuclear density gauge tests were performed to determine m-place density and 

moisture content. Tests were performed using the back scattering method in accordance with 

ASTM WK218, "Test Method for In-Place Density and Water (Moisture) Content of Soil 

and Soil-Aggregate by Nuclear Methods (Shallow Depth)." 

In-situ hydraulic conductivity was determined from Air Permeameter Tests (APTs). 

Saturated hydraulic conductivity was calculated from APT measurements and Equation 21 of 

Appendix D Tests were performed according to the standard test procedures provided m 

Appendix E. 

To document segregation of fines on the final compacted base layer, fines content 

was determined from bag samples collected at each test point location. About 1000 g of 

sample was washed over a No. 200 sieve and oven dried to determine percent fines. 

Materials 

Samples from several new base construction protects were obtained in bulk for 

laboratory characterization. The base construction prod ects ~nvestlgated during this study and 

material designations are as follows: 

1 3 5th Street, Des Moines, Iowa, modified subbase construction for North side ramp 

{MSB), 

2. I~iapp Street, Ames, Iowa, Recycled PCC granular subbase construction 

(RPCCAmes), 

3 IA 218 South Bound, Mount Pleasant, granular subbase construction {CLS218), 

4. US 151 East Bound, Cedar Rapids, granular subbase construction (CLS 151), 

5 University-Guthrie Avenue, Des Moines, granular subbase construction (CLSUG), 

6. University-Guthrie Avenue, Des Moines, special backfill construction (R.AUG) and 

~ I 35 South Bound, Story Co., granular subbase construction (RPCC35). 

Gra2n-size distribution curves for the aggregates are summarized in Tables 22 and 23 

and shown in Figure 30. A summary of index properties Including atterberg limits, percent 

gravel, sand, and silticay the coefficient of unlform~ty, Cu, coefficient of curvature, C~, 

specific gravity and maximum and minimum dry denszt~es is provided In Table 25 
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Results from Field Testing 

The m-situ tests were conducted side by side on a gnd pattern of 24 to 30 test points 

with spacing of about 6 to 10 ft directly on the compacted final base layer. Contours graphs 

showing the spatial vanat~on of all parameters are provided in Appendix F The contour 

graphs were plotted using geostatistical analysis and Knging approach. A summary of test 

results for individual projects is provided in Tables Gl through G7 Mean, standard 

deviation, and coefficient of vanation for all test parameters are summarized in Table 33. In 

the following, results from each individual project are described In detail. 

35 h̀ Street Modified Subbase Construction 

This test site is located on the North 35"' street ramp at I235 West Bound in West Des 

Moines, Iowa. An aenal photograph of the test location is shown m Figure F1 The gnd test 

pattern included the full width of the pavement as shown in Figure F2. A crushed limestone 

modified subbase matenal 12 inches in thickness was constructed at this location and 

overlaid with ACC pavement. The final subbase layer was compacted using a 5 ton steel 

drum roller with vibration for 8 to 16 roller passes. A photograph of the modified subbase 

layer dunng construction is shown in Figure 56. 

Figure 56. Photograph of the modified subbase layer during construction at 35 h̀ street 
test section 
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Results from GeoGauge tests show a mean modulus (MOD) of about 51 MPa with 

coefficient of variation at 30% (Table 33). The contour plot (Figure F3) shows that the 

modulus vanes from about 30 and 80 MPa with lower modulus values on the southern half of 

the test section. This base is considered weak according to the cntena established by Chen 

and Bilyeu (1999) (see Table 34). 

DCP test results show a mean Penetration Index (Pn of about 13 mm/blow with a 

coefficient to variation at 57% (Table 33). Mean CBR estimated from the PI is about 20 with 

a coefficient of variation at 40% (Table 33). The contour plot (Figure F4) indicates 

significant spatial variation m CBR ranging from about 5 to 30. Similar to the variation in 

modulus, CBR is lowest on the southern half of the test section. The modulus of subgrade 

reaction value (k) estimated from the mean CBR is about 250 pci. 

Results from Clegg Impact Hammer tests show a mean CIV of about 21 with a 

coefficient of variation at 27% (Table 33). The contour plot (Figure FS) shows the vanat~on 

m CN, wtuch is similar to the variation in CBR and modulus with comparatively lower 

values on the southern half of the test section. 

The mean value for moisture content is about 8.5% with a coefficient of variation at 

16% (Table 33). The contour plot (Figure F6) shows the variation m moisture content, having 

higher values on the southern half of the test secrion. Comparing the variation m moisture 

content with the variation m modulus, CBR, and CIV rt can be seen that the strength and 

stiffness are lower at locations with high moisture contents. Dry densities were in the range 

of about 1600 to 2000 kg/m3, with a coefficient of variation of 6%. There is no predictable 

relationship between the variation in dry density and strength stiffness (CBR, modulus, and 

CIV). This gives an indication that the strength of the base material does not solely depend 

on the dry density of the material. 
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Table 34. Com~.parison of in-situ strength/stiffness to standard values 

Pr©sect 
Mean 

MUD (MPa) RATING1 Mean CBR %° k* (pci) k*Ik** 
MSB 51.0 Weak 20 250 1.7 
RPCCAmes 82.8 Weak 23 260 1.7 
CLS 218 72.8 Weak 8 180 1.2 
CLS 151 69.0 Weak 9 190 1.3 
CLSUG 114.2 Weak/Good 53 SUO 3.3 
RPCC35 48.0 Weak 10 200 1.3 
RALjG 136.4 12 230 1.5 
Notes 
~Rat~ngs are according to Chen and Bilyeu { 1999j, see Table 18 
k*Modulus of Subgrade Reaction estimated according to Middlebraoks and Bertram ~ 1942) 
k* * — 150 pci, M:adulus of Subgrade Reaction assuming a loss of support value ~ 0.0, being 
used ~n the PCC pavement design by Iowa DUT 

Knapp Street Granular Base Construction 

This site is located on the west end of Knapp Street m Ames, Iowa, An aerial 

photograph of the test location is shown In Figure F8, and the grid test pattern used far 

testing the full width. of pavement is shown in Figure F9 A granular recycled concrete base 

(RPCCAmes) of about 8 inches thickness with across-slope of about 2% was constructed, 

and then overlaid with PCC pavement. No information was available on the number of roller 

passes used during compaction of the base. 

Results from GeoGauge tests shove a mean modulus (MDD) of about 83 MPa with a 

coefficient of variation at 16%. Contour plots (Figure F 10) show that there is relatively low 

spatial variation in modulus with most area from about 7D to 8D MPa. Although relatively 

uniform, this base is rated as weak according to Chen and Bilyeu (1999). 

DCP test results show a mean penetration index (PI) of about 10 nv~blow with a 

coefficient of variation of 18%. Mean CBR estimated from. the PI is about 23%with a 

coefficient of variation at 2U%. Figure F 11 shows the spatial variation in CBR over the test 

section. The modulus of subgrade reaction value estimated from CBR is about 2~0 pci. 

Results from Clegg Impact Hammer test show a mean CIV of about 23 with a 

coefficient of variation of 13%. The contour plots Figure F12) show the variation in CN 

and indicates similar var~.ation as CBR on the west edge of the test section. A few locations 

of higher CIv coincide with higher modulus values. 

The mean value for moisture content is about 1 ~% with a low coefficient of variation 
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at 8%. Figure F 13 shows the variation in moisture content over the test section. Dry densities 

were in the range of 1550 to 1750 kg/m3, with a low coefficient of variation at 4%. The 

variation in moisture content (Figure F13) is similar to dry density (Figure F14) with 

locations of higher moisture contents having lower dry densrtzes and vise-versa. There is no 

predictable relationship between the variation in dry density and strength/shffness (CBR, 

modulus, and CIS. 

Results from the APT show a mean saturated hydraulic conductivity (K) of about 4 

cm/sec, with a high coefficient of variation at 100%. The values obtained were m the range 

of about 1 to 30 cm/sec (see Table G2). However there are only a few locations with 

hydraulic conductivities greater than 8 cm/sec as shown m Figure F 15 The mean fines 

content (passing No. 200 sieve) is about 8% with a coefficient of variation at 24%. By 

comparing the contour plots for variation m fines content (Figure F 16) and hydraulic 

conductivity (Figure F15), it can be seen that locations of high fines contents exhibit low 

hydraulic conductivities. No relationship was identified between the variation m dry densiTy 

and hydraulic conductivity 

The laboratory gradation analysis on RPCCAmes shows a fines content of about 5% 

(see Table 22), which is within the Iowa specification. However, analyses on field collected 

samples shows that fines content vanes from 4% to 11 % (Figure F 16). This gives an 

mdicahon of segregation and possibly particle crushing during the construction process. 

Table 35. Comparison of m-situ hydraulic conductivity to standard values 

Project 
Mean 

K (cm/sec) 
Timei for 90% 
drainage (h) 

Time for 50% 
drainage (h) 

Quality of 
drainage 

Drainage 
coeffic~ent~ 

Cd
RPCCAmes 3.8 < 1 < 1 Excellent 1. ~ 0 to 1.25 
CLS 218 1.8 < 2 < 1 Excellent 1. .10 to 1.25 
CIS 151. 5.b < 1 < 1 Excellent 1.10 to 1.25 
CLSU~ 2.b < 1 < 1 Excellent 1.10 to 1.25 
RPCC35 6.0 < 1 < 1 Excellent 1.10 to 1.25 
RAUG 4.9 < 1 < 1 Excellent 1.10 to 1.25 
Dote 
~Tirrie of drainage estimated from PDE 1.0 
2Quality of drainage rating according to AASHTQ recommendation of 2 h maximum drainage time 
3Drainage Coefficient estimated using the Quality of Drainage, acc©rding t© AASHTO (1986) 
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using the mean hydraulic conductivity value and assuming a 0% longitudinal 

gradient of the base, cross slope of 2%, 8 in thickness of base, and 30% effective porosity 

the time of drainage was estimated using the PDE 1.0 program. The estimate 50% and 90% 

degree of drainage is < 1 hour and is rated "Excellent" (Table 35). 

114218 Permeable Base C`onstructron 

This site is located on IA 21 S South Bound about 15 miles south to Mount Pleasant, 

Iowa, An aerial photograph of the test location is shown in Figure F 17, and the grid test 

pattern is shown in Figure F 18. A crushed limestone granular subbase (CLS21$} was 

constructed to be 6 in. thick at the edges and 10 in. thick at the center (cross-slope of about 

2%}. The base was overlaid with PCC pavement. The final base layer was compacted using a 

5 ton steel drum roller With no vibration for 2 roller passes (see Figure 37}. 

Results from GeoGauge tests show a mean modulus of about 73 MPa with a 

relatively law coefficient of variation at 14%. The contour plots (Figure F 19} show the 

vanation in modulus, which is comparatively lower at the edges than the center. According to 

Chen and Bilyeu (1999), a modulus value of 73 MPa is rated weak. 

DCP test results show a mean Penetration Index (PI) of about 30 nlmlblow with a 

coefficient of variation at 40%. Mean CBR estimated from PI is about 8 with a coefficient of 

vanation at 44%. The contour plots show vanation in CBR (Figure F20) which is similar to 

modulus with lower values at the edges compared to the center. The modulus of subgrade 

reaction value estimated from CBR is about 1 SO pci. 

Clegg Impact Hammer tests show a mean CIV of about 13 with a coefficient of 

vanation at 26%. The contour plots shoal the variation in CIV, Indicating similar variation to 

CBR and modulus with Lower values on the east edge of the test section (Figure F21 }. 

The mean value for moisture content is about 4% with a coefficient of variation of 

variation at 18%. Dry Densities were from about 1650 and 1800 kg/m3, with a IoW 

coefficient of variation at 3%. Similar to the variation in moisture content (Figure F22), there 

is na significant variation in dry density (Figure F23). There is no relationship between the 

vanation in dry density and strength/stiffness (CBR, modulus, and CN), 

Results from the APT show a mean hydraulic conductivity of about 2 cm/sec, with a 
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high coefficient of variation at 80%. Hydraulic conductivities varied between 0.25 cm/sec 

and 7.5 cm/sec (see Table G3 }over the test section. Contour plot (Figure F24) indicates a 

significant spatial variation in hydraulic conductivity The mean fines content is about 9% 

with a coefficient of variation at 18%. By comparing the contour plots for variation in f nes 

content (Figure F25) and hydraulic conductivity (Figure F24), it can be seen that locations of 

high fines contents exhibit low hydraulic conductivities. No relationships were Identified 

between the variation in dry density and hydraulic conductivity 

Gradation analyses on CLS21$ resulted in fines content of about 8%(see Table 22}. 

But the field measurements showed a variation between 5% to 11 % (Figure F25}. 

Using the mean hydraulic conductivity value and assuming a 0% longitudinal 

gradient of the base, 2% of cross-slope, and 30% effective porosity drainage dines were 

estimated using the PDE 1.0 program. The estimate of time for 90% drainage is < 2 hour and 

for 50% drainage is < 1 hour, and is rated "Excellent" (Table 35}. 

USI S1 Perrrleable Base C©nstruction 

This site is located on US 151 East Bound near Springville, Cedar Rapids, Iowa. An 

aerial photograph of the test location is shown in Figure F26, and the grid test pattern used 

for testing the full width of the pavement is shown in Figure F27 Figure 57 shows a 

photograph taken during sampling and testing at this test section. A crushed limestone base 

(CLS 151) of about $ in. thickness on the edges and 10 in. thickness on the center (cross-slope 

of about 1 %) was constructed at this location and then overlaid with PCC layer. The final 

base layer was compacted using a 5 ton steel drum roller with no vibration for 2 roller passes. 

GeoGauge vibration test results show a mean modulus (MOD} of about b91VIPa with 

a coefficient of variation at 17%. The contour plots (Figure F28) show the variation in 

modulus over the test section with lower modulus on the northern edge. With this mean 

modulus value, the base is also rated as "weak." 

DCP test results show a mean penetration index (PI} of about 27 mmlblow with a 

coefficient of variation at 51 %. Mean CBR estimated from the PI is about 9% with a high 

coefficient of variation at 44%. Similar to the variation in modulus, the contour plot for CBR 

(Figure F29) shows lower values an the northern edge. The modulus of subgrade reaction 
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value estimated from CBR is about 190 pci. 

Clegg Impact Hammer test results show a mean CIV of about 14 with a coefficient of 

variation at about 16%. The contour plots for venation in CIV indicate lower values on the 

north-western part of the test section (Figure F30}. 

Figure 57 Photograph showing the process of measurements at grid points on US151 
Test section 

The mean value for moisture content is about 4% with a low coefficient of vanatzon 

at about 18%. The contour plot (Figure F31) and results show that there is no significant 

variation in moisture content. Dry densities were in the range 1500 to 1850 kg/m3 with a low 

coefficient of venation at about 6%. Similar to moisture content, there is no significant 

venation m dry density (Figure F32). There is no predictable relationship between the 

venation In dry density and strength/stiffness (CBR, modulus, and CIV}. 

Results from the APT show a mean hydraulic conductivity of 5.6 cm/sec, with a 

coefficient of variation at about 57%. The contour plats (Figure F32) show that the southern 

half of the test section has the lowest hydraulic conductivity The mean fines content ~s about 

4% with a coefficient of venation at 18%. By comparing the contour plots for venation m 

fines content (Figure F33) and hydraulic conductivity (Figure F32), rt can be seen that the 

locations of high fines contents exhibit low hydraulic conductivities. However, the venation 

in fines content is not significant at this site. 
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Using the mean hydraulic conductivity value and assuming a 0% longitudinal 

gradient of the base, 2% of cross-slope, and 30% effective porosity, the time of drainage was 

estimated using the PDE 1.0 program. The estimate of time for 50% and 90% degree of 

drainage ~s ~ 1 hour and ~s rated "Excellent" (Table 35). 

University-Guthrie avenue, Permeable Base C'onstf~uction 

This site is located on the exit towards University Avenue from I235 West Bound in 

Des Moores, Iowa. An aenal photograph of the test location is shown in Figure F35, and the 

gnd test pattern used for testing (only half the width of the pavement) is shown m Figure 

F36. A crushed limestone granular subbase (CLSUG) of about 6 m. thickness was 

constructed at this location and overlaid with PCC layer. The final base layer was compacted 

using a 5 ton steel drum roller with no vibration for 2 roller passes as shown in Figure 55 

Results from GeoGauge tests show a mean modulus of about 114 MPa with a 

coefficient of variation at 14% (Table 33). The contour plot (Figure F37) shows that there are 

many locations over the test section with modulus between 100 and 130 MPa, whereas only 

few locations with modulus greater than 130 MPa. With this mean modulus value, the base is 

rated "Weak/Good" (Table 34). 

DCP test results show a mean penetration index (PI) of about 4.7 mm/blow with a 

coefficient of variation at 17%. Mean CBR estimated from the PI is about 53 with a 

coefficient of variation at 21% (Table 33). The contour plot (Figure F38) shows that the 

variation m CBR is m between 40 and 80 wrth relatively lower CBR on the northern half of 

the test section. The modulus of subgrade reaction value estimated from CBR is about 500 

pci. 

Clegg Impact Hammer test results show a mean CIV of about 25 with a coefficient of 

variation at 24%. The contour plots (Figure F39) show that variation m CN is similar to 

CBR (Figure F38) with relatively low values on the northern half. 

Results from the APT show a mean hydraulic conductivity of 2.6 cm/sec, with a high 

coefficient of vanahon of at 158%. The hydraulic conductivity values ranged from d.l to 18 

cm/sec (see Table ES). The contour plot (Figure F40) shows that there are many areas with 

hydraulic conductivity less than 2 cm/sec. The coefficient of variation m fines content is 36% 
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with a mean value of about 8. ~%. Figure F41 shows that there is significant variation in fines 

content (from 4°f°-12°l0) over the test section. By comparing the contour plots for variation In 

fines Content and hydraulic conductivity, it can be seen that the central part of the test section 

in Figure F41 having high fines content coincides with low hydraulic conductivities in Figure 

F42. 

Using the mean hydraulic conductivity value and assuming a 0% longitudinal 

gradient of the base, 2% of cross-slope, and 30% effective porosity, the drainage times were 

estimated using the PDE 1.0 program. The estimated of time for 50% and 90% degree of 

drainage is < 1 hour and is rated "Excellent" 

Dry density and moisture content results were not determined at this project location. 

Untversaty-Guthrae Avenue Subbase Construction 

This site is located on the Umversrty Avenue exit from I235 West Bound m Des 

Moines, Iowa. An aenal photograph of the test location is shown m Figure F42, and the gnd 

test pattern used for testing (only half width of pavement) is shown in Figure F43 A subbase 

using special back fill material (RAUG) of about 12 in. thickness was constructed at this 

location and then overlaid with a granular subbase layer and PCC pavement. The final 

subbase layer was compacted using a 5 ton steel drum roller with vibration for about 14 to 16 

roller passes. 

Results from the GeoGauge vibration test show a mean modulus (MOD) of about 136 

MPa with a coefficient of variation at 22% (Table 33). The contour plot (Figure F44) shows 

that the modulus is lowest near the edge of the pavement. 

DCP test results show a mean penetration index (PI) of about 9 mm/blow with a high 

coefficient of vanahon at 90%. Mean CBR estimated form the PI is about 12 with a 

coefficient of variation at 138% (Table 33). The contour plot (Figure F45) shows the 

vanahon m CBR over the test section, which is similar to the modulus having lower values 

towards the edge of the pavement. 

Results from Clegg Impact Hammer test show a mean CIV of about 29 with a 

coefficient of variation at 40% (Table 33). The variation m CN on the test section (Figure F 

46) is similar to the variation m CBR and modulus, having lower values towards the edge of 
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the pavement. 

The mean value for moisture content is about 7% with a coefficient of variation at 

47% (Table 3 3 ). The contour plats (Figure F47) show that the southern half of the section has 

a uniform moisture content of about 9%, whereas the northern half is at about 3%. Dry 

densities were in range 1450 to 1750 kg/m3, with a coefficient of variation at 5% (Table 33). 

There is no significant spatial variation in dry density (Figure F48). 

Results from the APT show a mean saturated hydraulic conductivity of about 5 

cm/sec, with a high coefficient of variation at 81 % (Table 33). The hydraulic conductivity 

values ranged from 0.76 to 18 cin/sec (see Table G6). The fines content ranged from. 0.1 % to 

0.6% {Figure FS 0). 

I3S South Bound, Pe~meahl-e Base ~'onstruction 

This site is located on I35 South Bound about 2 miles south the I~S20/I35 

intersection, Hamilton County Iowa. An aerial photograph of the test location is shown in 

Figure FS 1, and the grid test pattern used far testing the full width of the pavement is shown 

in Figure F52. A recycled concrete base (RPCC35) of about 6 in. thickness with across-slope 

of about 2%was constructed at this location and overlaid with PCC pavement. The final base 

layer was compacted using a 5 ton steel drain roller with no vibration in 3 to 4 roller passes. 

Results from GeoCJauge tests show a mean modulus of about 4$ MPa with a 

coefficient of variation at 13%. The contour plots (Figure F53) show the variation in modulus 

over the test section with relatively low values on the edges of the pavement. With this mean 

modulus value, the base is rated "Weak" (Table 34). 

DCP test results show a mean Penetration Index (PI) of about 24 nvm/blow with a 

coefficient of variation at 50%. Mean CBR estimated from the PI is about 10 with a 

coef~ cient of variation at 3 8%. The contour plot for variation in CBR (Figure F54) is similar 

to modulus with lower values on the edges than on the center of the test section. The modulus 

of subgrade reaction value estimated from CBR is about 230 pci. 

Clegg Impact Hammer test results show a mean CIv of about 13 with a coefficient of 

variation at 26%. The contour plots (Figure F55) show that the variation in CIv is similar to 

CBR and modulus with lower values on the edges of the test section. Also few locations on 
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the center of the test section exhibit a lower C~v 

The mean value for moisture contents is about 11 % with a coefficient of variation at 

15%. There is no significant variation in moisture content over the test section (Figure F56). 
Dry densities were in the range of 1300 to 1600 kg/m3 with a low coefficient of variation at 
b% (Table 3 3 }. 

Results from the APT show a mean hydraulic conductivity of about 6 cmisec, with a 
high coefficient of variation at 107% (Table 3 3 ). Hydraulic conductivity values varied 
between 0.8 cm/sec and 26 cm/sec (see Table G3). The contour plot (Figure F58} shows that 
there is significant spatial variation in hydraulic conductivity over the test section. However, 
many locations on the test section exhibit a hydraulic conductivity less than 2 cm/sec. The 

coefficient of variation in fines content is about 3 7% with a mean value of about 6% (Table 
33). By comparing the contour plots for variation in fines content (Figure F59) and hydraulic 
conductivity (Figure FS 8), it can be seen that the locations of high fines contents exhibit low 
hydraulic conductivity 

Gradation analysis on RPCC3 5 resulted in fines content of about 2.~% (see Table 22}. 
But field measurement shows a variation from 4% to 11 %, which gives an indication of 

Increased fines possibly due to particle breakage during construction. Figure 58 shows 
evidence of segregation in fines at this construction site. 

Using the mean hydraulic conductivity value and assuming a 0% longitudinal 

gradient of the base, 2% of cross-slope, and 30% effective porosity, the drainage times were 
estimated using the PDE 1.0 program. The estimate of time for 50% and 90% drainage is < 1 
hour and is rated as "Excellent" (Table 35}. 
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Figure 58. Picture showing segregation ~n fines on the final base Layer 

Observing the test results and contour plots from all the projects it is indicative that 

the mean values of strength/stiffness and hydraulic conductivity meet the design cntena. But 

spatial variability of most parameters is observed, of which the degree and consequences are 

poorly understood. The pavement supporting layers including base/subbase and subgrade 

having non-uniform support capacity could lead to differential settlements causing failure on 

the surface Layer. It should be recognized that though the measurements may meet the design 

cntena, variability m these parameters could influence the long-term performance of the 

pavement. 

Statistical Analysis of Test Results 

Beyond calculating the mean and coefficient of variation values for each project, 

statistical analyses were performed on results for all projects with granular base (138 points). 

Table 36 summaries the mean (M), standard deviation (SD), and coefficient of variation 

(CV) for all parameters. Further, using linear regression techniques, Pearson s correlation 

coefficients were determined for relationships between all parameters and are shown m Table 

37 R-squared values were also calculated from the Pearson s correlations to better 

understand the influence of fines content, dry density water content and degree of saturation 

on vinous strength/stiffness measurements and hydraulic conductivity (see Table 3 8). 
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Results from statistical analyses show a coefficient of vanation of about 9% for 

density 83%for CBR and about 97%for hydraulic conductivity, mdicatmg significant 

vanahon. 

The R-squared values from Table 38 show that fines content accounts for more 

vanation m strength and stiffness than any other parameter. The R-squared value calculated 

on a linear regression for fines content versus hydraulic conductivity is about 0.13 Figure 59 

cleaxly shows however, that the relationship is non-linear (i.e. exponential). With an 

exponential fit, the R-squared value improves to 0.5. A similar relationship is observed from 

the laboratory investigation on RPCC (see Figure 31). 

Relationships between strength/stiffness (CBR, MOD and CIV) and hydraulic 

conductivity (K) shows R-values in the range of -0.004 to 0.078 (Table 37), indicating poor 

correlations. No relationship was identified even considenng a range of multiple regression 

analyses performed on several combuiations of these parameters. 

Table 36. Statistics of all field data 

Parameter 
Statistics 

M SD CV 
K (cma/sec) 4.4 4.2 96.8 
MAD (MPa) ~ 83.2 34.3 41.3 
S (MN/m) 9.6 4.0 41.3 
PI (mm/blow) 20.5 14.0 68.2 
CBR' % 17.8 14.7 82.7 
CIV 18.6 9.0 48.4 

fine_ s 5.4 3.5 b4.3 
v~% 6.7 3.6 53.5 

Yd ( /m3~ 1b54.6 119 4 7.2 
S% 32.1 17.2 53.5 
For symbols, refer to the Notes in Table 33 

Relationships between the parameters estimated from m situ tests are shown in 

Figures 37 through 39 A strong relationship between CIV measured from Clegg Hammer 

test and PI (mm/blow) measured from DCP test is observed with an R-squared value of 0.65, 

as shown m Figure 60. Linear relationship between CIV vs. GeoGauge Modulus (MPa) as 

well as CBR vs. GeoGauge Modulus (MPa) is observed with an R-squared value of 0.54 and 

0.59 respectively as shown m Figures 61 and 62 respectively 
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Significance of the Test Results in Design 

The field test results show that generally drainability of granular base materials is 

excellent. According to A.ASHTD (1986}, excellent drainage is defined as the state at which 

the drainage coefficient, Cd, is between 1.0 and 1.25 (Table 35}. I~sing the AASHTC~ 1986 

PCC pavement thickness design procedures and assuming various design parameters, the 

thickness required and reliability on design were determined. Results show that if a drainage 

coefficient, Cd, of 1.0, is assumed, the thickness required is about 9.5 in. at 95%reliability 

Whereas on assuming a Ca of 1.2, the thickness required is reduced to 8.5 in, maintaining 

95%reliability Additionally, it can be shown that reliability can be increased over 99% if the 

thickness is maintained at 9.5 in and using a Cd of 1.2. 

Assumptions: 

k* = IVlodulus of Subgrade Reaction = 150 pci 

E~ =Concrete Elastic Modulus = Sx 106 psi 

S'~ =1Vlean Concrete Modulus of Rupture = 650 psi 

J =Load Transfer Coefficient = 3.2 

C~ =Drainage Coefficient = 1.0 to 1.2 

t~PSI =Design. Serviceability Loss = 1 7 

W ~ g =Estimated Total 18-kip ESAL Applications = 5 1 X 106 

So = Uverall Standard Deviation = 0.29 

Results 

Ca
Thickness 

~in) 
Reliability 

°lo 
1.0 9.5 0.95 
1.2 8.5 0.95 

1.2 9.5 > 99% 

Feasibility of Various In-Situ Testing Methods 

Based on the experiences gained during the field testing phase of this project and a 
review of literature, a summary of comparisons between the various in-situ testing methods is 

provided in Table 39 Clegg Hammer and GeoGauge tests are more rapid and need fewer 
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people to perform as compared to DCP tests. Although the GeoGauge test is considered 

rapid, no correlations are available yet to relate the measurements to a standard plate load test 

(i.e. modulus of subgrade reaction}. Also, vibrations caused from construction traffic 

influenced the measurements made by the GeoGauge during testing. Various correlations 

available to estimate CBR from DCP test are well established and also the test method was 

recently standardized according to ASTM D6951-03 The DCP test can measure up to a 

depth of 3 9 in, where other tests are limited to surface measurements. The Clegg Hammer 

test is standardized. according to ASTM DS 874, but the correlations are not well established 

and are subs ect to change with soil type (Clegg, 19 86}. However, Clegg Hammer and 

GeoGauge can be used as rapid quality control tools to investigate the uniformity of a layer. 

The APT was demonstrated as a rapid quality control tool to measure the in-situ 

hydraulic conductivity within few seconds. Spatial variability of hydraulic conductivity over 

the final compacted base can be measured for quality control purposes in a few minutes. 

Table 39 Comparison between various in-situ testing methods 

Test Parameter 
measured 

Correlated 
parameter/s 

Time 
(m~nutes~ Simplicity 

Depth 
(in) 

Labor 
needed 

Skill 
level 

Cost 
($} 

Clegg 
Impact 

Hammer 
Test 

CIV CBR 0.2 1 

~ 

b# One Low 

Ge4GaugeT~ 
Vibration 

Test 

Stiffness and 

~ °d~~ 
1.5 2 9; ~ 

a 

One Low 

DCP Test Penetration 
Lndex, PI 

CBR, 
Modulus, 

UCS 
3 3 

~** 
39 Two Low $2500 

Air 
Permeameter 
Test (APT} 

Saturated 
Hydraulic 

Conduct~v~ty 
0.5 1 0 ~- 4 One Low $2000 

Nuclear 
Density 

Gauge Test 

Moisture 
Content, and 
Dry density 

5 1 12 One High $5000 

Key observations from Field Testing 

• Estimated modulus of subgrade reaction values for all prod ects with granular subbase 

is 1,1 to 2. S times greater than the Iowa DOT pavement design value of 15 0 pci. 

• Time estimates for SQ% a.nd 90% drainage for all granular subbase projects is < 2 
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hours and can be rated "Excellent" according to AASHTC.~ (1986). 

• Significant spatial var~.ability of most parameters is observed ~n each prod ect. 

Consldenng all prod ects with granular subbase, the calculated coefficient of vanatlons 

are as follows: 9% for density, 4I %for modulus, 53% for water content, 64% for 

fines, ~3% for CBR, and 97% for hydraulic conductivity 

• Cons~denng variations ~n density water content, degree of saturation, and fines 

content, results show that Vines content accounts for more venation ~n 

strength/st~ffness than the other parameters. 

• The strongest correlation from linear regression analyses between fines content and 

the other measured parameters with hydraulic conductivity (R2 value equals o.5). 

• No significant relationship was identified from a range of multiple regression 

analyses to correlate strengthlst~ffness properties with hydraulic conductivity 

measurements. 

• Relationships between Clegg I-lam~ner, DCP and GeoGauge measurements show 

indications of non-linear andlor linear correlations with R2 values of 0.54 to 0.65 

• A comparison of the field testing techniques shows that although the DCP may 

require more effort in the field, the results are better correlated to establish parameters 

and the depth of measurement is much greater. The APT Zs established as a simple 

and rapid technique for determ~natzon of hydraulic conductivity 
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DESCRIPTION OF THE PAVEMENT DRAINAGE ESTIMATOR (PDE) 

The Pavement Drainage Estimator (PDE) Version 1.04 is an Excel-based spreadsheet 

program that can be used to estimate the minimum required hydraulic conductiv~ty of a 

pavement base layer andlor the time to achieve a given percent drainage. Estimation of these 

parameters is determined from several factors which can be broadly addressed as properties 

of aggregates, dimensions of the pavement, rainfall intensity and the amount of drainage 

required. Results obtained from this program account only for the flow of water caused due 

to inf~ltratlon from the surface of the pavement. In locations where other sources of water are 

significant, adjustments to the calculations may be warranted. A brief description of the 

program with an example calculation is described in this section. 

what is PDE used fors 

The user provides information including dimensions of the pavement, infiltration rate 

and effective porosity of the base material. PDE (1.04) can then be used to estimate the 

required hydraulic conductivity (K) based on steady-state flow analysis, and the time for any 

given percentage of drainage based on unsteady-state flow analysis (see Moulton, 1980). 

Typical values for all these parameters are provided m the description page of the program. 

The program considers the effect of the geometry of the pavement which has a significant 

impact on the results. 

How is ~t used? 

• Figure 63 shows the introductory page of the program which begins with a flowchart 

describing the options available in the program. Next the user selects an option and 

clicks on "C o To Main Menu" 

• The main menu has three options for the estimation of parameters, and one option 

which describe all the parameters (see Figure 64). 
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• If the user knows or has an estimate for hydraulic conductivity of the base matenai, 

then depending on the degree of drainage required, pick one of the top two options 

(e.g. if the user ~s estimating time to achieve 90% drainage in the pavement base then 

pick DEGREE OF DRAINAGE > 50%). This step leads to a page similar to Figure 

65. 

• Enter all the values under the "Enter Values Here" (yellow bar). If the descnption of 

any parameter is needed, dust click on the parameter button. Th2s leads to the 

descnption page of the program as shown 2n Figure 66. After all the parameters are 

entered, output can be viewed under "Output" (pink bar) as "Required Permeability" 

(cm/sec and ftlday) and "Time to Drain" (hours and days). 

-.. , 
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Figure 63. Flow chart of PDE version 1.04 
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Sample Calculation 

For the pavement section shown in Figure 66, and for a given set of geometric 

conditions, calculations for steady and un-steady state flow conditions are provided as 

follows: 

.7C S~ 
PCC Weanng Surface 

~..r ~~. 
Aggregate Base Layer 

0 Subgrade 

i 
  11m  

8m 

Figure ~6. Cross-section of pavement 

Given data.: 

Inflltrat~on rate per crack = I~ = 0.22 m~/day/m, 

Width of the pavement = W~, = 8 m, 

Width of crack = W~ = 11 m, 

Spacing of transverse cracks -= CS = 4m, 

No. of lanes = N = 4, 

Thickness of base layer = H = 0.15 m, 

Effective porosity of the material = n~ = 37%, 

Cross-slope = S~ = 2%, 

f,ongitudinal gradient = g = 1 %. 

Calculations: 

Using the above information, the infiltration rate per unit area of crack can be 

calculated using Equation 1 

N~-1 W~.  _ 4~-1 11  ~ ~ ql e I~  -~-  —  -~- ~ 
Wp WpC~ 8 S 4, 

= o .213 m3 /day/mz

Assuming that there is constant ~nfiltrat~on throughout the crack, the ~nfiltrat~on rate 
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per unit width of crack ~s gYven by q, which is equal to the discharge capacity of the drainage 

layer, and can be calculated using Equation 4. 

~ q = qt x W~ = 0.213 x 11= 2.344 rn3/day/m 

Flow-path gradient and flow-path length can be calculated using Equations 2 and 3 

S v S 2 + 2 = 0.02 ~ + 0.01 ~ = 0.0223 g 

~~, 
~ L -- --

2 
= 4.47m 

Subst~tut~ng the values of L, S, q in Equation 2, the required hydraulic conduct~vlty of 

the drainage layer, k, can be computed as 

~ k -- ~  g  ~ ~  2.344  ~ 
~H(S+H/2L); X 0.15(0.0223+0.15/2x4.47), 

= 3 99 . $ 8 m/day = 0.46 cm/sec 

Assuming that the material used in the base layer has the hydraulic conductivity of 

0.46 cni/sec and using Figure 14, the time for 50% degree of drainage nay be computed as 

Si = LS l H -= 4.47 x 0.0223 / 0.15 = 0.664 

for U = 0.5 and S1 — 0.664, Time factor T = 0.2 9 8 

Hence the time required for 50% drainage ls: 

t= 
~ ~ L2  ~ 

Lk x H~ 

0.37 x 4.472 —
xT— x0.298-0.0367 days=0.9hrs. 

399.88 x 0.15 

~o, for the given set of conditions of the pavement, the material used in the drainage 

layer should have a hydraulic conductivity of 0.46 cm/sec { 1310 ft/day} to drain 50% of the 

water infiltrated in < 1 h. 
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FIELD INVESTIGATItJN of PAVEMENT PATCHING PROJECTS 

Field observations and testing were recently conducted on subgradeCbase layers at 

locations of full-depth patching on I-235 and Hwy 30. The objectives of the investigation 

were to document in-place engineering properties of the subgrade/base layers and thus 

improve our understanding of conditions that lead. to poor pavement performance. After the 

pavement sections had been removed, in situ tests including APTs and DCP tests were 

performed. Bag samples were also collected for material classification. Unfortunately none 

of the patching projects visited were supported by granular subbase materials. Future 

investigations should include an evaluation of in-service granular subbase layers. A brief 

summary of the test results and information gained from the patching prod ects is summarized 

in the following. 

1235 East Bound, West Des Manes, Iowa 

This patching site is located on I-235 east bound m West Des Moines, Iowa. The 

existing PCC pavement m this corndor is raddled with hundreds of patches. Our investigation 

shows that the pavement is underlain with about 4-6 inches of leveling sand (SAND235) 

underlain by weathered shale subgrade (CLAY235). Figure 67 shows across-section of the 

pavement. In order to prepare the existing PCC pavement for an ACC overlay detenarated 

sections of the pavement were saw cut, excavated, leveled, and replaced with new PCC. 

Figure 6$ shows a typical patching section. After removing the pavement layer, about 6 

inches of recycled concrete base (RPCC235) was placed over the existing subbase (Figure 

69). RPCC235 in this case is well-graded and only served as a leveling course, not a drainage 

matenal. 

Materials 

Grain-size distribution curves for SAND235 and RPCC235 are shown in Figure 70. 

The Iowa DoT gradation for granular subbase is also shown for comparison. A summary of 

the results is provided in Table 40. The coefficient of uniformity Cu, coefficient of curvature, 

C~, classification and percent fractions of gravel, sand, and silt/clay and Atterberg limits are 

provided in Table 41 for SAND23 5, RPCC23 5 and CLAY23 5 Grain-size analyses show that 
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the newly placed base Layer (RPCC235) fits the Iowa DOT modified subbase gradation. The 

SAND235 matenal meets the gradation requirements for granular backfill. 

PCC Surtace 
Layer 

T 
Leveling Sand 
Fill (SAND235) 

1 
T 
Weathered Shale 
(CLAY235) 

Figure 67 Cross-section of the existing pavement on I-235, West Des Moines, Iowa 

Figure 68. I-235 deteriorated PCC surface on the left, and excavation on the right 
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100 

I ~ 

Figure b9. Recycled PCC aggregate placed over• the existing subbase I-?~~ 

—♦-- SAND235 

90 +—}- RPCC235 
--~— SAND30 

80 ~ - -o Iowa DOT gradation limits 

~fl  

s~ 
I

3~ 

~s 

10 I 

Q 
0.01 0.1 

~~~'~°~ SIZE ~i'Ytrf1~ 

10 100 

Figu~•e f~• Grain-s~~e distribution eur~es fflr subbase rnater~als from patching projects 
compared to the I©~~a ~~T' granular subbase gradation lirn~ts 
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Table 40. Grain-size distribution data for samples from patching prod ects 

Sieve No. Sieve Size 
(mm) 

Percent Passing 
- 

SAND235 SAND30 IOWA 
DOT 

-
RPCC235 Iowa 

DOT 

1.5" 37.5 100 100 100 100 

1 25 100 94.6 93.7 

0.75" 19 100 ~ 76.3 79 7 70-90 

0.5" 12.5 92.3 64.8 63.9 

0.375" 9.5 87.9 60.8 55.9 

No. 4 4.75 77.6 51 41.5 

No. 8 2.36 64.6 43 20-100 31.2 10-40 

Na. 10 2 61 41.1 29 

No. 30 0.6 30.9 22.5 15.4 

No. 50 0.3 14.4 17 7.9 

No. I00 0.15 6.7 12.4 7.1 

No. 200 0.075 5.6 10.7 0-10 6.7 3-10 

~ Iowa DUT specified gradation according to section No. 4133 -- granular backfill 

2 Iowa DOT specified gradation according to section No.4123 -modified subbase 

In-Situ Testing 

DCP tests were performed at 7locations on the east bound lane and 1 location on the 

west bound lane of I-235 Tests were conducted up to a depth of about 800 mm from the 

surface of the RPCC2351ayer m the east bound lane. Tests performed on the west bound lane 

only included the subgrade (CLAY235) layer. APTs were conducted at 4locations on the 

new recycled concrete base layer (RPCC235). 

CBR values were estimated from DCP Penetration Index (mm/blow) results using 

Equation No. 4 of Table 19 Figure 71 shows the mean CBR with depth through the vanous 

soil layers. All eight CBR profiles for individual test results are provided m Appendix H. 

From Figure 71, rt can be seen that the SAND235 layer, which was directly under the 

pavement layer exhibits a CBR value m the range of 19 to 28. The RPCC235 material placed 

as a leveling Layer was very low in the range of 2 to 4. The subgrade layer (CLAY235) has a 

CBR value m the range of 5 to 14. 
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Figure 71. Change in CBR with depth: I-235 patch project 

Test results from APT measurements are shown in Table 42. Samples of about 1000 g 

were obtained at each test location to determine the fines content. Test results show that 

hydraulic conductivity decreases signif cantly with increasing fines. To investigate the 

variability ~n fines and hydraulic conductivity two APTs were conducted within a patch area 

only 3 feet apart (A and B). Results show that the hydraulic conductivity changes from 0.4 to 

0.8 cm/sec, indicating significant variability over a short distance. 

Table 42. I-235 fines content and APT results in RPCC 

Location K (em/sec) % f nes 
1 5.2 2.2 

2A 0.4 9.0 
2B 0.8 7.0 
3 0.5 5.0 

i~S Hwy 30 East Bound, Boone, Iowa 

Thzs PCC patching site 2s located on US Hwy 30 in the east bound lane about 3 miles 

west of Boone, Iowa. The existing PCC layer was underlain by 4-6 inches of leveling sand 

fill (SAND30} and glacial till as subgrade Full-depth patching of the existing 
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pavement was carried out on various areas at this location by completely removing and 

replacing the concrete slab, 

Materials 

The gran size distribution curve for SAND301s shown in Figure 70. The coefficient 

of un~form~ty, Cu, coefficient of curvature, C~, percent fractions of gravel, sand, and silt/clay 

Atterberg limits and classification for SAND30 and CLAY30 are shown in Table 41 

In-Situ Testing 

DCP tests were performed at four different patches to a depth of about 800 mm from 

the surface of the SAND301ayer. CBR values were estimated from the DCP Penetration 
Index (mm/blow) using Equation No. 4 of Table 19 Figure 72 shows the change m mean and 

standard deviation of CBR with depth. All CBR profiles for individual locations are provided 
m Appendix H. Unlike the I-235 measurements, Figure 72 shows that there is no significant 

change m CBR with depth. 

DCP tests were also conducted at 15 randomly located points within a patching area 
of about 12 ft by 12 ft as shown m Figure 73. The purpose of multiple DCP tests was to 

investigate the spatial variability of CBR for the pavement support layers. Tests were 

conducted by measuring the number of blows required to penetrate the upper to 150 mm and 

the underlying 300 mm (total of 450 mm from the bottom of pavement). The spatial CBR 

plots are shown m Figures 74 and 75 The vanahon m CBR for the sand layer (SAND30 for 
top 150 mm) is from 4 to 9 with a coefficient of vanation of 20%, whereas for the underlying 

subgrade layer (CLAY 30 from 150 to 450 mm deep) varies from 6 to ll wrth a coefficient 
of variation of 18%. CBR values are generally lower towards the edge of the pavement. 
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Figure 72. Change ><n CBR with depth: US Hwy 30 

SAND30 
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Figure 73. Test section used for DCP testing to investigate the spatial variability• US 
Hwy 30 
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Key Observations from Patching Projects 

• Excavations of PCC pavement sections for patches on I-23 5 revealed 4-6 inches of 

poorly graded leveling sand overlying weathered shale subgrade with high plasticity 

(PI — 33}. Hwy 30 PCC patches revealed 4-6 inches of well-,graded leveling sand 

overlying glacial till subgrade with moderate plasticity (PI =16}. 

• CBR values for the leveling sand and subgrade at the I-23 5 patching prod ect are In the 

range of 19 to 28 and 5 to 14, respectively CBR values for the leveling sand and 

subgrade at the US Hwy 3fl patching project are in the range of 4 to 9 and 6 to 1 1, 

respectively 

• Spatial variation in CBR observed over a 12 ft x 12 ft patch section on US Hwy 3 ~ 

shows that the CBR values are higher under the centerline of the pavement and that 

the coefficient of variation is approximately 20%. 

• Recycled PCC used as a leveling course on the I-23 5 prod ect has CBR value in the 

range of 2 to 4 and variable hydraulic conductivity in the range of 0.4 to 0.8 curls. 
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SUMMARY AND CONCLUSIONS 

The main conclusions developed from this research are summarized as follows: 

Laboratory Investigation 

• None of the aggregates obtained front the quarry and only a two from the field meet 

the specified Iowa DOT gradation requirements for granular subbase. 

• Maximum CBR is achieved at fines contents between 6% and 14% for granular 

subbase materials. All crushed limestone materials (CLS, ALS, and A,ALS) exhibit 

higher CBR values than recycled concrete materials (RPCC, RPCCAmes). 

• The degradation/abrasion loss is higher for recycled concrete than crushed limestone 

and gravel. 

• Hydraulic conductivity decreases exponentially with increasing fines content. 

• The fines content of RPCC must be 2% or less to meet the drainage requirement of 

90% in < 2h or less than 10% to achieve So% drainage in < 2h, 

• CBR decreases from dense to open gradations. 

• Hydraulic conductivity can significantly decrease with increasing compaction energy 

(i.e. density), but depends on the aggregate type. RPCC exhibited a 1 ~ times decrease 

in hydraulic conductivity with increased compaction energy The crushed limestone 

granular subbase materials achieved adequate hydraulic conductivity even at high 

compaction energies. 

Construction Operations 

• The construction equipment and procedures varied between prod ects. 

• Trimming aggregate with the Gomaco type trimmers leads to segregation, especially 

for dry base materials. 

• There was no moisture control during placement or compaction of final base layer. 

• Low moisture content is believed to contribute to increased segregation as there is 

poor adhesion between finer and larger particles. 

• Significant segregation and increase in fines content was observed in two of the three 

projects visited. 



www.manaraa.com

1~8 

• Construction traffic was allowed with no restnction on only one of the three prof ects 

visited. Although segregation was observed, it can not be solely linked to increased 

construction track, as other prod ects with no construction traffic showed similar 

segregation problems. 

Field Investigations 

• Estimated modulus of subgrade reaction values for all pray ects with granular subbase 

is 1 1 to 2.8 Mmes greater than the Iowa DOT pavement design value of 150 pct. 

• Time estimates for S 0% and 90% drainage far all granular subbase prod ects ~s ~ 2 

hours and can be rated "Excellent" according to AASHTO (1986). 

• Significant spatial variability of most parameters is observed in each project. 

Considering all prod ects with granular subbase, the calculated coefficient of variations 

are as follows: 9°10 for density, 41 %for modulus, S 3 %for water content, 64% for 

fines, 83 5 for CBR, and 97% for hydraulic conductivity 

• Considering variations in density water content, degree of saturation, and fines 

content, results show that fines content accounts for more variation in 

strength/stiffness than the other parameters. 

• The strongest correlation from linear regression analyses between fines content and 

the other measured parameters with hydraulic conductivity (R2 value equals 0.5). 

* No significant relationship was identified from a range of multiple regression 

analyses to correlate strength/stiffness properties with hydraulic conductivity 

measurements. 

• Relationships between Clegg Hammer, DCP and GeoGauge measurements show 

indications of non-linear andlor linear correlations with R2 values of 0.54 to 0.65 

• A comparison of the field testing techniques shows that although the DCP may 

require more effort in the field, the results are better correlated to establish parameters 

and the depth of measurement is much greater. The APT is established as a simple 

and rapid technique for determination of hydraulic conductivity 
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Patching Prod ects 

• Excavations of PCC pavement sections for patches on I-235 revealed 4-6 inches of 

poorly graded leveling sand overlying weathered shale subgrade with high plasticity 

(PI = 33). Hwy 30 PCC patches revealed 4-6 inches ofwell-graded leveling sand 

overlying glacial till subgrade with moderate plasticity (PI =16). 

~ CBR values for the leveling sand and subgrade at the I-235 patching project are in the 

range of 19 to 28 and 5 to 14, respectively CBR values for the leveling sand and 

subgrade at the US Hwy 30 patching project are m the range of 4 to 9 and 6 to 11, 

respectively 

• Spatial variation m CBR observzd over a 12 ft x 12 ft patch section on US Hwy 30 

shows that the CBR values are higher under the centerline of the pavement and that 

the coefficient of vanahon is approximately 20%. 

• Recycled PCC used as a leveling course on the I-235 project has CBR value m the 

range of 2 to 4 and variable hydraulic conductivity m the range of 0.4 to 0.8 cm/s. 
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RECC~M~VIENDATIONS 

Optimal Range for In-Place Stability and Permeability 

Target in-place stability and permeability values can be established t© ensure design 

assumptions are met or exceeded in the field. For stability, the design assumption is a 

modulus of subgrade reaction (k) equal to 15 0 pci. Because it is very difficult and time 

consuming to determine k in the field (i.e. plate load tests), the authors recommend 

correlating k to CBR, which can be determined from a number of in situ testing techniques. 

According to Middlebrooks (1942), a k of 150 pci is approximately equal to a CBR of ~. 

I~owever, given the significant variation of CBR documented in this report, it is further 

recommended that the field target value be increased by three standard deviations above the 

minimum target value (according to the "three-sigma rule" described by Dal and Wang 

(1992), 99 73°/© of all normally distributed values fall within three standard deviations of the 

average). Thus, assuming. a coefficient of variation of 50% (average of Individual projects in 

this report), the target average CBR value determined in situ should be >_15. The average 

CBR value determined from all granular subbase projects in this study was 17.8. 

For permeability a rating of "excellent" (AASHTO, 1986) indicates that pavement 

drainage occurs in ~ 2 hours. For a two lane highway minimum threshold values of 1.0 cm/s 

and 0.21 cm/s corresponding to 90% and 50% drainage were determined from PEE (version 

1.04. Similar to the "three sigma rule" applied to the target CBR values, given that the 

coefficient of variation for hydraulic conductivity determined from projects tested in this 

study is 100%, the minimum target values for in-place hydraulic conductivity should be 4.0 

cin/s and 0.84 cm/s to achieve 90% and 50% drainage, respectively in < 2 hours. The 

average value determined for granular subbase project in this study was 4.4 curls. 

Field Quality ControVQuality Assurance 

Based on the recommendation for in-place stability and permeability described above, 

and the relationships identified between various in situ test measurements from this study, a 

DCP Penetration Index (PI} of < 14 mm/blow a Clegg impact value (CIv} of ~0, and a 

GeoGauge modulus of >_80 MPa are recommended as target quality control values to ensure 
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stability of granular subbase materials. The average recommended PI value is similar to the 

value recommended by Burnham (1997) at about 19 mm/blow for a pavement base 

immediately after compaction. Because of the added advantage of generating a profile plot, 

DCP tests are recommended over the Clegg impact hammer and GeoGauge. For 

determination of hydraulic conductivity use of the Air Permeameter Test is recommended. 

End-Results Specifications 

Based on guidelines developed by Trenter and Charles (1996), it is recommended that 

the field quality control tests be performed at a frequency of at least every 200 ft. along the 

length of the final compacted granular subbase layer. The average tests results should meet 

the established cntena discussed above. 

Alternative construction Practices 

Significant segregation of fines was observed on all projects, contributing to the high 

variation (coeff dent of variation = 100%) in the measured 1n--place permeability To reduce 

segregation, the following construction operations are recommended: 

1 Do not spread the aggregate material longitudinally along the pavement section, but 

rather use a motor grader to push the aggregate transversely from a center 

windrow/pile. A motor grader with a sharp angle (i.e. 45 degrees) can facilitate this 

process (Pavement Technology Workshop, 2000). 

2. Do not use recycled PCC for permeable granular subbase m areas where the 

construction traffic must haul over the placed aggregate (narrow or no shoulders) 

3. As an alternative to trimming equipment (e.g. Gomaco type), use a motor grader with 

GPS assisted grading (i.e. stakeless grading control). If trimming equipment must be 

used, however, ensure that the aggregate is delivered to the site with sufficient water 

content (7%-10 %) to bind the fines during trimming. 

Future Research Deeds 

The future of pavement materZal characterization will Involve repeated tnaxlal 

loading as means to detect permanent strain behavior under dynamic loading. It is 

recommended that the Iowa DOT conduct resilient modulus testing of representative granular 
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subbase aggregates to ensure no long-term permanent strain problems will develop. It ~s 

anticipated that recycled aggregates from PCC and A.CC may exhibit poor performance in 

this regard and may require gradation changes or stabilization to ensure adequate long-term 

performance. Further, It ~s recommended that intact core samples of granular subbase 

materials from in-service pavements be sampled and characterized in detail to document 

gradation, particle breakdown, contamination, and permeability especially for the recycled 

aggregates. Computed tomography (CT) techniques could provide useful information in this 

effort. 
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APPENDIX A. GRADATIC.INS USED BY VARIOUS STATE AND FEDERA►.L 
AGENCIES 
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Sieve Size 
Passing 

AA►SHTO No. 57 ASTM D 1241 ASTM D 2940 
UL LL UL LL UL LL 

3.. 
2 1/2" 
2" l00 10Q 100 100 

11/2" 100 100 ~ 100 95 
1 1/4" 
1" 100 95 

314" ~ 92 70 
5/S" 
I/2" 60 25 
3/S" 65 30 70 50 
1/4" 
#4 10 0 55 2S 55 35 
#8 S 0 
#10 40 15 
#16 
#z0 
#~o 2~ 12 
#40 Zo s 
#50 
#60 
#loo 
#200 8 2 8 0 
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APPENDIX B: TEST PROCEDURE FOR LABORATORY PERMEABILITY 
TESTING USING LARGE SCALE AGGREGATE COMPACTION MOLD 

PERMEAMETER (ACP) 
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LARGE SCALE AGGREGATE COMPACTION MOLD PERMEAMETER (ACP) 

The Large scale ACP was built to measure hydraulic conductiv~ty of granular materials. Both 
constant .head and falling head tests can be performed. The ACP consists of a 60 liter 
capacity water reservoir, large compaction mold with 1 inch diameter hole porous disk at the 
base and a base mold attached connected to 1 a Inch diameter butterfly valve. The dimensions 
of the large scale ACP are shown in Figure B 1. The permeaxneter was built for testing 
aggregate with par~.cles saes up to 2 inches. 

~~._.~._ 11.75 in 

Reservoi r Tan k 

Sao~ple 

32.a ~n 

Porous disk with --- 
1 in dia. holes 

10 ~n dia. Valve 
opening 

Base mold  
holding the valve 

L 

11.75 in 

~ ~ i ~ ~ ~ i ~ 

T 
6A m 

W 

12.0 rn 

~~-

Figure B1. Cross-section of the large scale AC 
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EQUIPMENT 

The Aggregate Compaction Moid Pe~t~~eameter (ACP) 
Stop-watch with a preczs~on of up to 1 / 100th second 
Calibrated level indicator attached to the reservoir 
1 inch hose connected from a water supply tank 
Bubble level 
Marshal Impact Hammer 

TEST PROCEDURE 

1 A level surface should be selected for testing. Place the base mold on two spacer 
blocks as shown in the Figure B2. 

Fi~;u~-c B2e Base rr►oid placed an the e€~ncrete bl©clys 

2. Place the aggregate compaction mold on the top of base mold. Then place one or two 
f ne screens on the porous disk to minimize washout of finer particles dunng testing 
(Figure B3}. 

Figure B3. Aggregate compaction mold with screens placed ©~~er the base m©ld 
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3. A marshal impact compaction hammer of 6.7 kg weight with 45 cm drop height can 
be used to compact the sample (Figure B4). To achieve standard proctor compaction 
energy, the sample should be compacted zn 5 lifts with 67 blows per each lift. 

Figure B4. Marshall impact hammer (left) and compaction procedure (right) 

4. After compaction, the reservoir tank ~s placed over the sample mold. The ~o~nts 
between the reservoir tank and the mold, as well as the mold and the bottom base, are 
sealed with hose clamps at the ~o~nts (Figure BS). 

Figure B5. Final setup ready far testing 

5 Next, close the valve attached to the base mold, and fill the reservoir tank to the 
desired head level. Because of entrapped air ~n the sample, air bubbles usually appear 
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in the reservoir ta~r~k after filling It with water. The test should not be started until air 
bubbling has stopped. 

6. Falling Head Test: Open the valve, and record the time taken (t) for drop in head for 
each 100 mm as Ha and H1. Repeat for five readings from 90 to 80 cm, 80 to 70 cm, 
70 to 60 cm, 60 to 5 0 cm, and S 0 to 40 cm. The water level indicator attached to the 
reservoir t~ is used to measure the change in head. 

7 Constant Head Test: Open the valve and adjust the inlet flow of water to maintain 
constant head in the reservoir. The level indicator attached to the reservoir tank Zs 
used to monitor for a steady state flow condition. Once steady state flow is achieved, 
use the same inlet flow and measure the quantity of water (Q) to fill a known volume 
is time (t). 

8. Repeat steps 5 and 6 for falling head tests and 5 and 7 for constant head tests. 

MEASUREMENTS AND CALCULATIONS 

.Falling Dead Test: 

Ho Initial Head (cm) 
Hl Final Head (cm) 
OH Change in Head (cm) 
H Average Head (Ho + H~)/2 (cm) 
t Time for change m head (sec) 
L Length of the sample (cm) 
i Hydraulic Gradient, H/L (cm/cm) 
v Velocity of flow, AH/L (cm/sec) 
n "n" slope of the line m plot between log i ls. log v 

Plot a logarithmic scale with hydraulic gradient (log i) on the x-axis and velocity of flow (Iog 
v) on the y-axis. The slope of the line ~s equal to "n" Use equation K =vin to compute the 
saturated hydraulic conductivity (cm/sec). 

Constant .Head Test: 

H Head (mm) 
Q Quantity of flow in the inlet for a time (t), (cm3/sec) 
t Time (sec) 
L Length of the sample (cm) 
A Area of the sample (cm2) 
i Hydraulic Gradient (H/L), (cm/cm) 

Use Darcy's equation to compute the saturated hydraulic conductivity K (cm/sec) = Q/(i.A). 
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APPENDIX C: RAW DATA FROM LABaRATORY TESTING 
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Table Cl. Sumrnar~~ of results from CBR testing 

Material Penel`ration 
46 fines 

~ 246 446 6% 8% 1046 32% 34% 

~~ 

0.5" 48 SS 47 42 38 42 16 19 
0.4" 39 46 46 51 

... ... 
34 40 15 18 

0.3" 29 42 
4 . 

~4 40 30 38 16 18 -
0.2" 20 34 35 34 i 23 37 12 17 
0.1" 11 15 18 18 12 35 7 9 

DD (kg/m3) 2253.7 2347.0 2423.9 2418.3 2390.1 2412. i 2409.3 2430.0 
DD(pcf) 140.7 146.5 151.3 1.51.0 149.2 150.6 150.4 151.7 

CLS 
x 

0.5" 13 i7 35 34 SS 40 43 35 
0.4" 10 14 30 24 S.Z 35 37 3C 
0.3" 7 10 23 19 54 25 34 26 
0.2" 3 5 21 13 45 2 5 42 19 
0.1" 2 4 18 7 4CI 12 33 9 

DD (kg/m3) 1982.1 1996.0 2058.7 2072.3 2150.7 2159.7 2218.4 2208.8 
DD(pef) 123.7 124.6 128.5 129.4 134.3 134.8 138.5 137.9 

RPCC 

0.5" 6 20 23 22 22 '; Z2 19 
0.4" 3 1$ i 9 2 0 2,? 19 18 
0.3" 2 14 14 18 2? 16 16 
0.2" 2 11 10 13 1.9 11 11 
0.1" 1 7 5 6 IJ 5 ~ 5 

DD (kg/m3) 1976.9 2016.6 2040.3 2036.1 2229.5 2262.8 2265.1 
DD(pef) 123.4 125.9 127.4 127.1 139.2 141.3 141.4 

~~ 

0.5" 22 4~ 
~46 

0 31 0 0 32 25 
0.4" 31 0 21 44 18 17 31 
0.3" 20 0 ~~ ' 8 ,38 17 20 33 
0.2" 11 26 ~#Q 14 27 14 25 20 
0.1" 9 32 ~.~ 13 15 6 21 10 

DD (kg/m`') 2322.6 2342.4 2392.6 2454.2 2442.7 2448.3 2428.0 2548.0 
DD(pc~ 145.0 146.2 149.4 153.2 152.5 152.8 151.6 159.1 

~ 
ALS 

0.5" 12 20 25 29 32 57 45 39 
0.4" 10 18 24 25 27 43 39 33 
0.3" 9 17 25 2 25 3~ 25 29 
0.2" 6 15 26 18 21 ~ 2.9 12 23 
0.1"` 5 12 25 8 l~ 15 4 12 

DD (kg/n~3) 2048.2 2074.7 2190.5 2247.8 2295.4 2340.4 2366.3 2276.7 
DD(pc~) 127.9 129.5 136.7 140.3 143.3 146.1 147.7 142.1 

~ I 
j 

~~~~ =des 

0.5" 20 16 18 i 19 18 31 25 3i' 
0.4" 21 16 17 19 19 31 2 3 ~~ 
0.3" "Z 3 18 18 20 20 2 7 24 ~3 
0.2" 27 18 18 18 21 18 22 3.3 
0.1" 30 14 16 14 23 9 20 33 

DD (kg,`m3) 2303.6 2275.5 2296.1 2287.9 ~ 2318.7 2305.6 s 2251.4 2279.4 
DD(pcf~ 1.43.8 142.1 143.3 142.8 14-x.8 143.9 1=10.5 142.3 r ~ 

a 
ndicutes the rr~a~imu~ ~BR v~l~e ~i~ring respective ppnetra;ion 



www.manaraa.com

172 

APPENDIX D: DERIVATION AND VALIDATION FUR APT 
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ESTIMATItJN OF SATURATED HYDRAULIC CONDUCTIVITY FROM APT 

Derivation of a relationship to deternune the saturated hydraulic conductivity from Air 
Permeameter Test (APT) field measurements is described m this section. The derivation 
expands Darcy's Law to consider air compressibility viscosity of air, and partially saturated 
field conditions. First, an equation to estimate air permeability (LZ) from APT field 
measurements is derived and then the effect of partial saturation m the aggregate is taken into 
account to determine intrinsic permeability (L2) and the saturated hydraulic conductivity 
(L/T). 

Darcy's Law 

In 1856, Henry Darcy developed a simple equation describing one-dimensional flow of water 
m saturated porous media for viscous/Iaminar, steady state, and horizontal flow conditions 
(neglecting the effect of gravity). The sunplified form of Darcy's equation is written as 
shown in Equation 1 Equation 2 shows the differential form of Darcy's equation (Evans et 
al. 1965) 

q = KiA (1) 

v =kwµ) ~dP~~) ~2) 

Where 
q = the flow rate [L3/T] 
K = saturated hydraulic conductivity [L/T] 
i = the hydraulic gradient [L2] 
A = the cross sectional area through which the fluid is flowing [LZ] 
v = Velocity of flow or volume of water per umt time passing umt cross-section 

[L/T] 
k = permeability of the medium [LZ] 
µ = viscosity of water [FT/L2] 
dp/c~ =change of pressure with distance [F/L2/L] 

Figure D1 shows a soil sample having across-sectional area, A, length, L, and inlet and 
outlet pressures of P~ and PZ, respectively For water flowing through the soil, 
compressibility effects are neglected, and velocity of flow (v) is assumed to be uniform along 
the length of the sample. Thus, the change m pressure with distance (dp/~) is constant along 
the length of the sample (Equation 3). Velocity of flow (v) can be related to the quantity of 
water flowing through the cross-sectional area (A) per wut time as shown in Equation 4. 
Substituting Equations 3 and 4 into Equation 1, Equation 5 can be used to calculate the flow 
rate (Muskat, 1937). 

dp/~ =constant = (PI-P2)/L (3) 
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v = Q/A (4) 

Where: 
Q= 

(5) 

flow rate or quantity of water flowing through a sample per unit time [L3/T], 
A = cross-sectional area of the sample [L`], 
L = Length of the sample [L], 
Pi = Inlet Pressure [F/L2], 
P2 = Outlet Pressure [F/L`]. 

L 

Figure D1. Sample indicating pressure at inlet and outlet 

Derivation of Air Permeability 

Muskat (1937} reported that Darcy's law is valid for air permeability by only considering the 
compressibility of air. This implies that air velocity and change m pressure, dp/dx, are no 
longer uniform through the sample. Muskat (1937) made the following assumptions: 

1 Steady state mass flux along the flow path is constant ('y V =constant), where y is the 
density of air, and V is volume. Considering volume of flow per unit cross-section per 
unit time, yv is also constant, where v is velocity of flow 

2. Flow is isothermal, p = ~yRT where R is the gas constant and T Zs the temperature in 
degrees Kelvin. 

Combining these assumptions, pv is also a constant. If Equation 2 is multiplied by p 
(Equation 6), the left hand side becomes constant and can be integrated along the tube length, 
L resulting in Equation 7 Next take p as P1, and v=Q/A, and substitute ~n Equation 7 to form 
Equation 8. This relationship was proven experimentally by Muskat and Botset (1931). The 
coefficient of permeability k, can then be calculated by rearranging Equation 8 as shown ~n 
Equation 9 

pv = (k/µ) p (dp/dx} (6) 
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pvL = (k/µ) (P12 — Pz2)l2 

Pi ~Q/A) L = ~~µ) ~P~ 2 — P22)J2 

k = (2 Q µ P~)/(A/L) (P12 — Pz2)/2 

(7) 

(8) 

~9) 

Equations 6 through 9 were denved for one dimensional flow• however air permeability field 
measurements is a three dimensional problem (Figure D2). Therefore, geometry of the 
instrument, sample boundary conditions, and pressure distributions must to be considered. 
Evans and Kirkham (1949) used an analogy of flow of electricity to calculate a geometric 
factor (A ~ to account for inlet and outlet diameters of an air permeameter (Figure D3). This 
geometric factor did not consider the sample dimensions or the pressure distribution 
however. Goggui et al. (1988) introduced an alternative geometric factor (Go) for steady state 
gas flow that considers instrument and sample geometry, and pressure distributions (Figures 
D2 and D4). The relationships proposed by Goggm et al. (1988) use a modified form of 
Darcy's law to determine Go. 

fnfet 

C.L 

Tip Seal 

r~ 

P erv,ous Ni ater~al 

t3 utiet 
A 

R 

m perm eable N{ embrane 

Figure D2. Showing a three dimensional setup for Air Permeability Testing (Modified 
from Gogg~n et ai.1988) 
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H 2° •I 
—~I zal~ 

Figure D3. Geometrical effect used by Evans and Kirkham (1949) 

According to Darcy's theory the velocity of flow and quantity of discharge through a porous 
media are directly proportional to the hydraulic gradient which is true only for 
viscous/laminar flow conditions. The water flow condition in open-graded base material is 
very often seen to be non-laminar even at Iow hydraulic gradients (Aggregate Handbook, 
1996). The transition between Iammar and non-laminar flow can be represented using 
Reynolds Number (Re). Re less than 2000 represents laminar flow conditions (Cedergren, 
1988). To avoid the complexities ofnon-laminar flow the APT device was designed to 
determine the permeability at a low pressure, low flow and laminar condition. 

Figures D2 and D4 show the cross-section and geometry of the APT device, having an inlet 
diameter of 2a and a tip seal outer diameter of 2b, and a soil sample having a thickness of L 
and radius of R. The theory and procedures used to calculate the geometric factor for the 
device are summarized below 

First, all dimensions can be expressed m dimensionless form by dividing by "a" (Equations 
10 to 14). 

rD = r/a, and (13 } 
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3.9" 

~-♦ 
2° 

3.5" = 2a  'J L 
11 

11'/z"=2b 

Figure D4. Cross-section of the Air Permeability Testing (APT) Device developed at 
Iowa State University 

Modified Darcy s Law 

As discussed earlier, Darcy's law indicates that the rate of flow of fluid through a cross 
sectional area (mass flux) equals the hydraulic conductivity multiplied by the hydraulic 
gradient. Using this relationship, but considenng atwo-dimensional flow condition Goggin 
et al. (1988) defined the mass flux across the inlet surface of an air permeameter as the 
permeability of the medium (k) multiplied by the partial derivative of the pressure spatial 
distribution (m { ~ }) wrth respect to depth (z) as the modified Darcy's law or the differential 
form of Darcy's law (Equation 15). Assuming radially symmetrical flow in a homogenous 
and isotropic material, the gas inlet mass rate is given by Equation 16. Replacing the vertical 
mass flux (puZ) across the inlet face by the differential form of Darcy's law as a function of 
the spatial pressure distribution (m { ~ }) (Equation 15), the inlet mass rate can be written as 
shown m Equation 17 where Go is defined using dimensionless parameters as shown m 
Equation 18. This relationship indicates that the geometric factor is a function of spatial 
pressure distribution, tip seal size and soil sample size. 

PuZ _ ko ~f~~ 
aZ 

2 se 

mo = j J f Pu Z } Z=o rdrd9 
00 

mQ = --aGo(bD,R~,LD)ko~{~~-



www.manaraa.com

178 

Where: 

z p =0 r D ~D (18) 

puZ =mass flux m z direction [M/T LZ], 
ko =sample permeability [L2], 
m{~} =pressure as a function of z and r coordinates (spatial pressure distribution) 

[M/TL3], 
mo =inlet mass rate [MIT], 
Go = Geometnc factor which is a function of (bD, RD, LD) [dimensionless]. 

Mass Conversation 

Considering the steady state flow of a compressible fluid (i.e. air in this case) In a 
homogenous and isotropic media, the mass conservation equation in a cylindrical coordinate 
system is shown in Equation 19 Substituting the mass flux using the differential form of 
Darcy's Iaw, Equation 19 can be presented as shown in Equation 20. This equation is 
presented in dimensionless terms as shown In Equation 21 where mD is the dimensionless 
spatial pressure distribution. 

r dr ~rPu`~ + ar ~PuZ) = 0 

1 a ~rko a~{~~~ + a ~ko ~~~}~ = o r a~ a~ aZ aZ 

D ~ D [rpko ~  D ~ + aaD ~l{o ~ D ~ _ 

D 

The boundary conditions for the dimensional equation (Equation 20) are summanzed in 
Equation 22 and the boundary conditions for the dimensionless equation (Equation 21) are 
provided m Equation 23 

Dimensional Boundary Conditions: 

Inlet —" p  1 

P outlet ` Po 

aP = o 
az Z_o 

for p< r <a., z=© 
for b~ r <R, z=0 and 0< z <L, r=R (22) 

for a< r <b, z=o and 0< r <R, z=L 
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Dimensionless Boundary Conditions: 

mD { ~ 0}=0 for bD< rD <RD, zD =0; 0< zD <LD, rD =RD, and 0< rD <RD, ZD - LD 

mD{ ~ 1 }=1 for 0< rD <1, zD =0 (23) 

~ D {~} = 0 for 1< r <b z 0 _ D_D D -
C~Z z=p 

Finate Difference Analysas 

To calculate the geometric factor using Equation 18, the dimensionless spatial distribution of 
the pressure as a function of zD and rD is required. However, Equation 21 with the boundary 
conditions provided in Equation 23, cannot be solved analytically Hence, the finite 
difference numerical method using an iterative approach was used to solve the dimensionless 
spahai pressure distribution parameter (mD). The procedure followed is outlined in Figure 
DS The soil sample was discretized into a number of nodes (or points} representing the 
corners of small squares with a length (h = 0.1 in). The dimensionless spatial pressure at a 
node i, ~ was calculated as a function of the dimensionless pressure at the surrounding nodes. 

After calculating the dimensionless spatial pressure at all nodes, the calculated value of 
dimensionless pressure at each node was compared with the values calculated in the previous 
step at the same node. If the maximum difference (Max X) of dimensionless pressure at a 
node i~ calculated at two successive iterations was greater than the preset convergence 
criteria, €, (0.01), a new set of dimensionless pressure distribution parameters are calculated. 
However, if the calculated maximum difference is less than €, the system converges and the 
iterative solution is stopped. 

Once convergence is achieved, the derivative of the dimensionless spatial pressure (Equation 
18) is calculated using the forward derivative definition and the converged values of the 
dimensionless spatial pressure. The integration shown m Equation 18 was evaluated 
numerically using Simpson s rule (see Ra~asekaran, 1985). 
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Read device dimensions, sample dimensions, 
element size and convergence limit 

y 
Create nodes and calculate node 

coordinates 

~< 

Apply boundary conditions 

y 
Calculate dimensionless 

pressure 

No 
Check convergence 

Yes 

Calculate dimensionless 
pressure derivative at the 

inlet 

Calculate Go 

Figure D5. Flowchart of the code written to calculate the geometric factor G©. 
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Figure D6. Finite difference nodes and the dimensions of the sample used in the analysis 

results 

Figure D? shows the dimensionless spatial pressure distribution calculated using the code 
written by the research team. It shows that, the flow of gas is concentrated near the contact 
surface of the tip seal, which Indicate that this region dominates the flow pattern and 
consequently the mass rate versus ink ection pressure relationship and the geometric factor 
value. To validate the results several points were compared with the results reported in 
Coggin et al. (1988). Figure D8 shows an R2 value of o.9882 far the compared points and a 
45° line of R2 value of 1. Values of G° were also compared with the values presented in 
Goggle et al. t 1988) for different RD and LD values which showed a difference less than 1 °10. 
~©, for the device dimensions shown in Figure D4, were calculated for two soil samples 
having radius of 18 and 12 inches and thickness of 4, 6, 8, 12 and 24 inches. Figure D9 
shows the geometric factor results for the Air Permeability Testing (APT) device developed 
at Iowa State I.Jniversity as a function of sample radius and thickness. 
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Figure D7 Showing Dimensionless Pseudo-Potential Contours for the case of bD=2, 
RD=L.D=3, a=1 
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Figure D8. Comparison of calculated m { ~ ~ values with values from G©ggin et al. 
(1988). 
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Figure D9 Ga curve showing the effect of sample size 
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Using the calculated geometric factor, Go, which depends on the sample dimensions, the 
sample air permeability can be calculated using Equation 24 (Goggin et al. 199$}: 

kair = 2 µair Q P 1 / a Go (P 12 — P22) (24) 

Where: 
lca,r = air permeability (cm2) 
µa,T = kinematic viscosity of air (Pa.S} 
Q = volumetric flow rate (m3/sec) 
P1 = inlet pressure (Pa) 
PZ =outlet pressure or ahnosphenc pressure (Pa) 
bD =dimensionless tip radius (b/a) 
a =radius of tip (cm) 
b =outer radius of tip 
Go = Geometric factor (dimensionless) 

As mentioned earlier the air permeability decreases as soil saturation increases since less area 
is available through which flow can take place (Evans et al. 1965). To calculate a material 
property at full saturation (intrinsic permeability in this case), the effect of partial saturation 
needs to be considered as a function of saturation and particle size distribution. 

Effect of Partial Saturation 

Brooks and Corey (1964) developed an expression to calculate the relative permeability to air 
as a function of degree of saturation and pore-size distribution of the sample (Equation 25). 

Where ; 

kra = (1— Se )2 (1—Selz+a~a,> 
) (2s) 

k,~ = relative permeability to air (dimensionless), 
Se =effective water saturation [Se = {S — Sr)/(1-Sr)], 
~, =Brooks-Corey pore size distribution index assumed as 4.0, 
S~ =residual water saturation, assumed as water saturation at bulking moisture 

content, 
S =water saturation. 

Calculation of Saturated Hydraulic Conductivity 
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Knowing the air permeability (LZ) and the relative permeability to air using the procedure 
described above, the next step is to calculate the mtnnsic permeability (Equation 26) which 
in turn can be used to calculate saturated hydraulic conductivity (Equation 27) (Army Corps, 
2001). 

atr = k l ra (26) 

~ _ {kl P g) ~ µwater (27) 

Where: 
ka,~ = air permeability (cm2) (from Equation 16) 
k, = mtnnsic permeability (cmZ) 
k,~ =relative air permeability (dimensionless) 
K =Saturated hydraulic conductivity (cm/sec) 
p =density of water (g/cm3) 
g =acceleration due to gravity (cm/sec2) 
µ~,.8ter =absolute viscosity of water (gm/cm-sec) 

Substituting equations 24, 25 and 26 m to 27, the saturated hydraulic conductivity can be 
deternuned (Equation 28). 

Therefore: 

~_ 2 ~'a~r ̀ tPi P g 
2 2 X 2 (2+~~,~ 

_a Cio(Pi -' 1'2 )_ ~'water(1 ~ Se) {1 _ Se ) 

Conversions 

(2g) 

As the f eld data ~s not similar as the units mentioned above, conversion of all these factors ~s 
required. The standard values of water at 20°Care as follows (Pau chang lu, 1979); 

µair = 1.81 E-5 Pa-sec 
µwater = 0.01 gm/cm-sec 
a = 1 75 in = 4.45 cm 
P2 = 101325 Pa 
p = 1 g/cc 
g = 981 cm/sec~ 
~, = 4.0 (assumed} 

Pressure measured m the field needs to be multiplied by 249.08 to convert from inches of 
water to Pa. Hence P] _ (101325 + 249.08 P), where P is the measured pressure in the field. 
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Flow rate Q measured in the field needs to be multiplied by 7.8659 to convert from ft3/hr to 
cm3/sec. Hence the final equation to compute the saturated hydraulic conductivity K (cm/sec) 
using the Air Permeability Testing Device is given as: 

K (cm/sec) = 
6.277 Q (249.08 P + 101325)  X21 ~ 

{Ga ((249.08 P + 101325)2 —1.02b6E10) x (1 Se )` (1— Se' .s ))} 
Sample Calculation 

Data from field: 

Q =flow rate = 80 ft3/hr 
P =pressure = 0.2$5 in. of water 
L =thickness of base -= 6 ~n. 
S =saturation = 40% 
Sr = residual saturation = 5% (assumed) 

Calculations: 

Se = (0.4-0.05)/(1-0.05) = 0.368 
Go = 4.97 (from Figure D9) 
Substituting all the values m Equarion 21 

K (cm/sec) _ 
6.277 x 80x (249.08x 0.285 +101325) 

{4.97x((249.08x0.285+101325)2 —1.0266E10)x(1 0.368)2 (1-0.3681'5 ))} 

~ K = 2.18 cmisec 

A,ir Permeameter Test (APT) Results Vs. Laboratory Permeability Test Results 

Hydraulic conductivity determinations from the APT at maximum and minunum dens~ries 
measured m the field are compared to the laboratory measurements on samples compacted to 
sunilar densities. Laboratory tests were performed using the Large Scale Aggregate 
Compaction Mold Permeameter (ACP) m accordance with the test procedure provided m 
Appendix B. 

The hydraulic conductivity measurements of various materials at maximum and minimum 
densities from. both field and lab are provided in Table Dl Figure D10 shows the mean 
hydraulic conductivity values from field and lab with their upper and lower Limits of 
measurement, The variation between lab and field measurements is attributed to the non-
uniformity of the material in the field. The comparison tests in the lab were uniformly mixed 
and compacted. Thus, it should be recognized that a material with change in gradation, 
particle orientation etc., changes the hydraulic conductivity properties significantly but not 
necessarily the global density calculations. 
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Table D1. Maximum and Minimum Hydraulic Conductivity values in Field and Lab 

Material 
FIELD LAB 

KMaa KMin KMaz KMin 

Sand 2.06 0.25 0.09 0.07 
CLS218 7.91 0.23 2.83 1.39 
CLS151 15.18 0.83 3.22 1.22 
CLSD 13.60 6.43 5.81 5.25 
CLSUG 20.02 0.10 0.21 0.06 
RPCC35 28.35 0.93 3.24 0.20 
Notes: 
KM~ =Hydraulic Conductivity at Minimum Density 
KM;n =Hydraulic Conductivity at Maximum Density 

Variability in hydraulic conductivity measurements in field are shown in Figure D 11. The 
left part of the figure shows APT results from the field, whereas the nght part shows the 
water permeability tests from the lab. The final compacted sections both in lab as well as the 
field can result In segregated layers with changes m local density First considenng the 
laboratory testing, the water should pass through all the layers present in the sample, thus 
rneasunng the lowest possible permeability Secondly considenng the field testing, the air 
tends to move through the pores having least resistance, thus measunng the highest possible 
permeability However, it should be noticed that the movement of water m the pavement base 
will also be through the matenal having least resistance. Thus it can be concluded that the air 
permeability measurement simulates the field conditions in a more appropriate way than the 
conventional laboratory test methods. 

30.0 
■ K FIELD 
O K LAB 
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Y 

10.0 - 

5.0 - 

0.0 ~- 
SAND CLS 218 CLS 151 

I 
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Figure D10. Comparison of Laboratory vs. Field Hydraulic Conductivity 
Measurements 
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Figure D . Comparing the T~~pe of Measn~-ement in Field (left) and Lab (right) 

The APT device demonstrates as a rapid quality control tool m dete~~~immg the saturated 
hydraulic conductivity of granular bases ~n few seconds. Also, tests can be performed at 
vanous locations m a few minutes to ensure uniformity of the final base layer. However, 
there are also a few limitations of APT as follows: 

• The APT can not be performed on areas having steep slopes (> 10%). 

® Matenal properties including dry density and degree of saturation are needed to 
determine the saturated hydraulic conductivity An approximate of all these 
parameters far a wide range of base matenals has been established. But for better 
accuracy measurement of in-situ dry density and moisture content is recommended. 
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APPENDIX E. METHOD OF TEST IN-SITU PERMEAMETER TEST (APT) FOR 
GRANULAR MATERIALS 
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METRO© OF TEST 
IN-SITU AIR PERMEAMETER TEST (APT) FOR GRANULAR MATERIALS 

SCOPE 

This test method describes the procedure for determining the ~n-situ hydraulic conductivity of granular 
base materials using the air permeameter test (APT}. Measurements are limited to materials with 
hydraulic conductivity >_ 10"2 cm/s. 

DEFINITION 

Air Permeability — It Rs defined as a factor of proportionality between the rate of air flow and the 
pressure gradient along the flow distance. 

Saturated Hydraulic Ganductivity — It ~s defined as the rate of discharge Of water at 20°C under 
conditions of laminar flow through a unit cross-sectional area of a soil medium under a unit hydraulic 
gradient 

APPARATUS 

The APT device is shown in figure 1 The device consists of the contact ring, console, two flow 
meters and two differential pressure gauges (DGPs}. The DPGs are attached to the outflow end of 
the contact ring. A compressed air tank with regulator is connected to the APT through a '/4 in. 
diameter hose. Neoprene foam is attached to the bottom of the contact ring to prevent leakage 
between the bottom of the contact ring and the ground surface. 

EC~UIPMENT 

A. Air Permeameter Test (APT} device with two flow meters (0 to 100 cu ftlhr and 0 to 200 cu 
ft/hr} and two differential pressure gauges (0 to 0.25 in of water and 0 tot in of water}, 

B. Compressed air tank and regulator 
C. '/4 ~n. hose with quick connections at both ends, 
D. A wrench to fix the regulator to the compressed air tank, 
E. 1 in. thick neoprene foam of 11 in. diameter with a 4 in. diameter hole ~n the center 

TEST PROCEDURE 

The APT ~s a rapid ~n-situ test device for determining the hydraulic conductivity Of granular bases in 
20 to 3fl seconds. Air permeability measurements are converted to saturated hydraulic conductivity 
values using Equation A. Steps t0 perform the test are as follows: 

A. Connect the pressure regulator to the compressed air tank. 

B. Connect the compressed air source to the APT device using the '/4 in. hose and quick 
connector 

C. Seat the instrument at the test location by leveling the instrument using a bubble level. The 
Enitial pressure reading will not be zero unless the instrument is leveled. If the instrument 
cannot be leveled, note the initial pressure reading as Pa. 

D. Start by turning the DPG valve towards the pressure gauge which has a measuring range of 
0 to 0.25 in. of water 
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E. Open the pressure regulator connected to the air tank to about 20 psi. 

F Gently open the flow regulator fixed on the flow meter which has 0 to 100 cu ft/hr measuring 
range, and let the air flow through the system. During this process the 0 to 200 cu ft/hr flow 
meter should be closed. As the air flows through the system a rise in the bubble level can be 
seen in the flow meter 

G. As the air flows Enta the aggregate layer pressure builds up as indicated by a rise in pressure 
in the DPG. {ncreasing the flow rate increases the pressure. 

H. Record the flow reading as "C~" and its respective pressure reading as "P, at five different 
flow rates (e.g. 20, 40, 60, 80, 100 cu ft/hr). 

If the flow rate exceeds 100 cu ft/hr close the flow meter and slowly open the 0 to 200 cu ft/hr 
flow meter 

J. If the pressure exceeds 0.25 in. of water stop the air flow by closing the flow regulator and 
turn the DPG value towards the pressure gauge having 0 to 1 in. of water measuring range. 

K. After measuring the pressures at five different flow rates close the flaw meters and relocate 
the APT for additional tests. Because of the rapid data collection, severs! test points can be 
tested and averaged. 

Flow 
Meters 

Flow 
Regulator 

Hose to 
Air Tank 

Figure 1. Air Permeameter Test (APT} Device 

CALCULATIONS

©~G Valve 

Neoprene 
Foam 

A. Determine the Geometric Factor (Go) based on the estimated thickness of the aggregate 
layer (L) at the test location. 

B. tJse the range of saturation values provided in Table 1 to estimate "S" for the calculations. 
For better accuracy, determine the in-situ dry density and moisture contents at each test 
location. 

C Calculate the saturated hydraulic conduct~vEty K {cm%SEC) using the relationship: 
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K (cmisec} —  6.277 Q (249.08 P + 101325) 
{Go ((249.08 P + 10'1325) 2 —1.0266E10) x (1 Se }~ (1— Se~.s 

}}? 
~v here: 

K = 
~' = 
O = 

saturated hydraulic conductivity (cm/sec} 
P, — Po =measured pressure — initial pressure (inches of water) 
flow rate (cu ft/hr) 

G~ = Geometric factor determined from Figure 2 
S~ = Effective saturation [Se = (S — S~)/(1-S~}] 
S = Field saturation (from Table 1) 
S~ = Residual saturation % (assumed to be 5% for most granular materials) 
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Tablet . Typ~ca! saturation values (S) for various base materials 

4.7 

Material 
Range of 

Saturation, S% 
Open-Graded Crushed 
Limestone 18 to 26 

Dense-Graded Crushed 
Limestone 22 to 40 

Open-Graded Recycled 
Concrete 18 to 26 

Dense-Graded Recycled 
Concrete 34 to 46 

Special Back Fill Material 22 to 46 

Modified subbase 35 to 55 

4.8 4.9 5.0 
G® 
5.' 5.2 5.3 

[Ai 

5.4 5.5 

x=1.75 rn. 
b=5.75 rn. 

c.~ 

Figure 2. Graph to determine Geometric factor G ,̀ for ~~'T Device 
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SAMPLE CALCULATIfJNS 

A. Data obtained from test location 1 in field: 

Po =initial pressure = 0.015 ~n of water 
P~ =Measure pressure = 0.3 in of water 
Q =Flow rate = 80 cu ft/hr 
~. = Thickness of base = 6 ~n. 
S =Field saturation = 40°l° 
S~ = Residual Saturation = 5% {assumed) 

Calculations: 

P = Actual P = P~ — PQ = 0.285 in of water 
Go =Geometric factor from Figure 2 for L at 6 in = 4.97 
Se = {0.4-0.05)/{ 1-0.05) = 0.368 

Subs#ituting ail the values an Equation A. 

K (cm/sec) =  6.277 x 80 x (249.08 x 0.285 + 101325) 
{4.97 x ((249.08 x 0.285 + 101325)2 —1.0266E10) x (1 0.368)2 (1— 0.368 ~'S ))} 

~ K = 2.18 cm/sec. 

Note: 1 cm/sec = 2835 ft/day 
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Air Permeability Test (APT) 

Project Date 
Project No. Soil Types) 

Location Test No. 
Test 
No. Location Material Initial Po Pressure, P, Flow Rate, Q Permeability 

(in. of H20) (cu ft/hr) K (cm/sec) 
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APPEI~DI~ F• CQNTDUR GRAPHS 
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C(JNTOUR GRAPHS FOR THE DATA FROM 35TH STREET MODIFIED 
SUBEASE CONSTRUCTION 
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Figure F1. Aerial Photograph of the Test Location (Iowa DOT, 2004} 
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CONTUITR GRAPHS FOR THE DATA FROM KNAPP STREET BASE 
CtJNSTRIJCTION 
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Figure FS. Aerial Photograph of the Test Location (IDNR, 2004) 
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Figure F9. Grid Setup for Testing at ~;napp Street Lase Construction Site 
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CONTOUR GRAPHS FOR THE DATA FROM tTS 218 GRA,NI~LAR BASE 
CONSTRUCTION 
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Test Location on 
IA 218 South 

Figure F17 Aerial Photograph of the Test Location (IDl\TR, 2004} 
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CONTOUR GRAPHS FOR THE DATA FR011~ US 151 BASE CONSTRI~~TIO►N 
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Figure F42. Aerial Photograph of the Test Location (IDI~TR, 2004) 
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Figure F51. Arial Photograph of the 'Pest Location (IDNR, 2004) 
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APPENDIX G: RA~V DATA FRAM FIELD PROJECTS 
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Glossary of Terms ITsed for Field Test Results 

ya Dry Density measured form Nuclear Density Gauge Test (kg/m3) 
CBR California Beanng Ratio (%) 
CBRI CBR calculated from PI, using Equation No. 4 of Table 19 
CBR2 CBR calculated from CIV using correlation CBR = (0.24 N + 1)2
CIV Clegg Impact Value measured from Clegg Impact Hammer Test 
CV Coefficient of Variation (%) 
K Saturated Hydraulic Conducriv~ty (cm/sec) 
M Mean 
MOD Modulus calculated from GeoGauge~ vibration test (MPa) 
PI Penetration Index measured from DCP testing (mm/blow) 
S Stiffness calculated from GeoGaugeTM vibration test (MN/m) 
S% Degree of Saturation (%) 
SD Standard Deviation 
w% Moisture Content measured from Nuclear Density Gauge Test (%) 

fines Fines Passing No. 200 sieve size 
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CBR at Location 3 on 1235 
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CBR at Location 5 on 1235 
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CBR at Location 7 on 1235 
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CBR variation at Location 1 on US30 E 
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